

Using the i4Go Technical Reference Guide
The i4Go Technical Reference Guide provides an introduction to i4Go®, reviews the implementation methods
available to a developer, and reviews the implementation parameters developers will use to test and implement
i4Go with Shift4.

Introduction to i4Go
i4Go was designed to secure cardholder data (CHD) in eCommerce business environments with web browser-
based applications that integrate online (website) and onsite (kiosk, Software as a Service) technologies by
intercepting CHD at the point of entry—before it ever enters the merchant’s Web server or hosting provider’s
system—and working with Shift4’s PA-DSS validated Universal Transaction Gateway® (UTG®) or API Web service*
and PCI DSS-compliant Lighthouse Transaction Manager (LTM) payment gateway to replace the CHD with a
payment token, a unique ID to reference the actual data. This will drastically reduce eCommerce merchants’ PCI
DSS scope and may qualify them to use the SAQ-A (EP).

The application will use the resulting payment token to process the transaction via UTG or API Web service and
LTM. At no time does real CHD exist in the merchant’s devices, applications, event logs, transport mechanisms,
databases, Web servers, or hosting provider’s systems.

*If the environment cannot support the use of a UTG, direct server-to-server Web service calls can be used to
replace the CHD with a payment token and subsequently process the transaction.

WARNING! i4Go is designed to keep real and sensitive CHD information
out of the merchant’s Web server or hosting provider’s system. If you
send this information to the merchant’s systems, you are defeating
i4Go’s purpose.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 1 of 107

Security Best Practices
Please review these important details:

• Review the Securing the Merchant’s Site That Uses i4Go document.
• Shift4 highly recommends that the merchant’s server has a SSL certificate.

Other Implementation Requirements
Please review these important details, which are supplemental to the requirements outlined later in the document
based on the implementation method chosen:

• The application must be able to exchange an Auth Token for an Access Token. (For additional information,
see the Prior to Implementation section.)

• The merchant’s server must have a valid Access Token and must pass the token to i4Go using the
i4go_accesstoken parameter.

• The merchant’s server must be able to perform a server-to-server call to obtain an access block. If the
merchant’s server communication package does not recognize Shift4’s SSL certificate, a ZIP is available
here under i4Go: https://myportal.shift4.com/index.cfm?action=support.security.

• For the Standard Direct Post implementation method, i4Go does an HTTP/HTTPS redirect back to the
browser or merchant’s server with the response data.

• The developer can implement i4Go on their payment information form such that their end users are not
aware they are using i4Go; however, Shift4 recommends language be added introducing i4Go and briefly
explaining how it protects CHD. (When using the iFrame implementation method, we have included
content in each template which is hidden by default but can be displayed. We recommend you use the
text that can be displayed in the templates.)

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 2 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/downloads/documentation/i4go/securing%20the%20merchant%E2%80%99s%20site%20that%20uses%20i4Go.pdf
https://myportal.shift4.com/index.cfm?action=support.security

Prior to Implementation
For developers that are implementing i4Go and Shift4 API integration, the Shift4 API team will provide the
developer with the Auth Token during the certification process.

For certification and production, an Auth Token will need to be exchanged for an Access Token. (See RESTful API in
MyPortal API Corner for instructions on Access Token Exchange.)

Note: If only i4Go is being implemented and you are not planning to use
the Shift4 API, it may be possible to generate an Access Token instead of
generating an Auth Token and exchanging it for an Access Token. For
additional information, contact your Shift4 API analyst.

Note: If you are interested in using Shift4 Risk Management Services to
perform a risk assessment during the i4Go tokenization process, contact
your Shift4 API analyst for assistance. In addition, the i4go_basket is
required to support this feature.

Note: If you are interested in having the payment card’s bank verify the
card as part of the payment process, see the Card Verify information in
the Implementing Step 1 section. In addition, the i4go_basket is
required to support this feature.

Note: If you are interested in using 3-D Secure (3DS), see the 3DS
information in the Implementing Step 1 and Implementing Step 3
sections. In addition, the i4go_basket is required to support this
feature.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 3 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api

The process for generating an Auth Token for the production environment is briefly outlined below:

 The Account Administrator signs in to LTM.

 From the menu, the Account Administrator selects Settings > API Settings.

 On the API Settings page, the Account Administrator clicks Add API to manually create API credentials.

 In the Create API Credentials window, the Account Administrator configures the applicable options and clicks
Submit.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 4 of 107

i4Go Technical Reference Guide

 In the View/Edit API Credentials window, the Account Administrator records and provides the Auth Token to
the application and clicks Submit.

Note: For additional information on this process, the Account
Administrator can see the Account Administrator Guide.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 5 of 107

i4Go Technical Reference Guide

https://s4-myportal.s3.amazonaws.com/downloads/documentation/ltm/account%20administrator%20guide.pdf

i4Go Implementation Methods
While i4Go implementation methods may vary, the use of i4Go is designed to be seamless whether the end user is
entering their CHD on an eCommerce website or the end user is processing a customer’s purchase at a kiosk.

Note: The term “end user” refers to the person who is entering
information on the payment information form.

i4Go supports the following implementation methods:

• iFrame
• AJAX Using JSON
• Standard Direct Post

Shift4’s preferred implementation method is using the iFrame to maximize i4Go’s benefit. However, if the iFrame
method isn’t desired, then Shift4 recommends a combination of both technologies: AJAX using JSON for a seamless
integration with better communication error trapping than Standard Direct Post, and Standard Direct Post as a
fallback in the event that scripting is disabled on the client browser.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 6 of 107

i4Go Technical Reference Guide

iFrame
Shift4’s preferred implementation method is using the iFrame to maximize i4Go’s benefit.

To implement i4Go using this method, there are five key steps; each step requires developers to implement certain
functionality to ensure the payment information is tokenized. The five steps are briefly outlined below and
described in greater detail in the following subsections.

Requirement: The payment information must be tokenized for each
transaction in order to benefit from reduced PCI DSS scope.

 The purchase is initiated at the point of sale in a web browser-based environment. The end user's IP address is
sent with the merchant's Access Token through the merchant's server to the i4Go server, thus requesting
authorization† for Step 4.

 The i4Go server returns an access block and the i4Go server address to the merchant's server. The merchant's
server must modify the values of the i4m initialization parameters to include the access block and to post to
the returned i4Go server address.

Requirement: The merchant must add rate limiting logic at this point in
the process to protect against the iFrame being continuously refreshed in
an attempt to keep generating access blocks. For example, protect
against three access blocks being generated in one second and ten access
blocks being generated in one minute.

 The CHD is entered on the payment information form (which is in an iFrame) and submitted directly to i4Go.
i4Go sends the CHD to LTM where it is replaced with a payment token.

Tip: Swiping payment cards is supported. The end user simply clicks
inside the iFrame and swipes the payment card using a point-to-point
encryption (P2PE) enabled swipe reader or unencrypted magnetic swipe
reader (MSR). Whether to support unencrypted MSRs can be configured.
In addition, a script can be used to detect a card swipe without having to
click inside the iFrame. For additional information, see the Implementing
Step 3 section.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 7 of 107

i4Go Technical Reference Guide

WARNING! While i4Go’s swipe collection logic supports both P2PE swipe
readers and unencrypted swipe readers, Shift4 recommends always using
P2PE swipe readers because the card data is encrypted inside the device,
providing encryption from the point of swipe. These devices add another
layer of security that unencrypted MSRs cannot provide. In addition,
Shift4 recommends using P2PE devices with SRED as a function of the
device, such as ID TECH SecuRED™ or SREDKey™.

 The i4Go exit parameters are returned and mapped to the appropriate vendor-supplied form fields. (These
fields will typically be hidden from the end user and only available for the vendor to retrieve and use for the
next step.)

 The application uses the payment token to process the transaction. (Note that processing the transaction
happens outside of i4Go, either via local UTG or our server-to-server APIs.)

 †This will attempt to authorize the end user's IP address to submit a single transaction through i4Go, regardless of
where in the world the end user resides.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 8 of 107

i4Go Technical Reference Guide

Implementing Step 1
Step 1: The purchase is initiated at the point of sale in a web browser-based environment. The end user's IP
address is sent with the merchant's Access Token through the merchant's server to the i4Go server, thus
requesting authorization for Step 4.

Please review these important details:

• This step is initiated from the merchant’s Web server.
• This step requires an Access Token. (For additional information, see the Prior to Implementation section.)
• This step must be done for each tokenization attempt because the access block does expire.
• This step requires the use of fuseaction=account.preauthorizeClient, i4go_clientip,

and i4go_accesstoken posted to https://access.shift4test.com (for certification) or
https://access.i4go.com (for production). (The response will be JSON. For additional information, see the
i4Go Entry Parameters for the preauthorizeClient Request section.)

o (Optional) To include support for Card Verify, this step requires the use of:

 i4go_basket
 paymentAPI and setting steps to include CARD_VERIFY. (For additional information, see

the corresponding row in the table in the i4Go Entry Parameters for the
preauthorizeClient Request section.)

o (Optional) To include support for 3DS, this step requires the use of:

 i4go_basket
 paymentAPI and setting steps to include 3DS_STANDALONE. (For additional information,

see the corresponding row in the table in the i4Go Entry Parameters for the
preauthorizeClient Request section.)

Requirement: When 3DS is in use, the access block and/or invoice
number should only be used one time. If an error occurs during the
process or on the challenge window, a new access block and/or invoice
number is needed.

o (Optional) To include support for Apple Pay® and Google Pay™ wallets, this step requires the use of:

 i4go_basket (For additional requirements, see the Implementing Apple Pay and Google Pay
Wallets section.)

o (Optional) To include support for Shift4 Risk Management Services, this step requires the use of:

 i4go_basket

o (Optional) To return a signed JSON Web Token (JWT) to ensure data is not tampered with during the
tokenization process, this step requires the use of i4go_hs256key.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 9 of 107

i4Go Technical Reference Guide

https://access.shift4test.com/
https://access.i4go.com/

Note: For additional information on paymentAPI, see the i4Go Entry
Parameters for the preauthorizeClient Request section.

Note: The Implementing Apple Pay and Google Pay Wallets section
provides guidelines and other information pertinent to implementing
wallet support to an existing i4Go integration.

Requirement: Any call to https://access.shift4test.com or
https://access.i4go.com must be direct posted (using traditional form
post with individual form fields) and cannot be JSON or XML (though the
paymentAPI and i4go_basket mentioned above are serialized JSON
strings). In addition, developers must ensure the application retains a log
of all authorization requests, including the client IP address, for
troubleshooting purposes.

Sample – preauthorizeClient Request

Note: The preauthorizeClient request is a post from the
merchant’s Web server, which will be in their language of choice. The
example below is a Postman script.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 10 of 107

i4Go Technical Reference Guide

https://access.shift4test.com/
https://access.i4go.com/

Card Verify
If you are interested in having the payment card’s bank verify the card as part of the payment process, contact
your Shift4 API analyst for assistance.

Additionally, see the Verify Card with Processor section in the REST API documentation, ensuring to click the Card
Number Unencrypted option because that is what i4Go uses.

Shift4 REST API i4Go API

card.number Populated by the i4Go iFrame.

card.expirationDate Populated by the i4Go iFrame.

card.securityCode.indicator Populated by the i4Go iFrame.

card.securityCode.value Populated by the i4Go iFrame.

customer.addressLine1
Populated by the i4Go iFrame or
basket.consumer.billingAddress.address1.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 11 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/cardsverify

Shift4 REST API i4Go API

customer.firstName
Populated by
basket.consumer.billingAddress.firstName.

customer.lastName
Populated by
basket.consumer.billingAddress.lastName.

customer.postalCode
Populated by the i4Go iFrame or
basket.consumer.billingAddress.postalCode.

currencyCode Populated by basket.orderDetails.currencyCode.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 12 of 107

i4Go Technical Reference Guide

cardOnFile

In addition, cardOnFile and its parameters may be used with Card Verify as needed. For additional information,
complete the following steps:

 Click this REST API documentation link: Cards.

 Scroll down to the Verify Card with Processor section.

 Scroll down to the transaction object and click to expand it.

 Scroll down to the cardOnFile object and click to expand it.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 13 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api#tag/Cards

paymentAPI Example for Card Verify Support

To support the Card Verify feature, paymentAPI and setting steps to include CARD_VERIFY are required.
Optionally, cardOnFile and its parameters may be used if desired.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 14 of 107

i4Go Technical Reference Guide

3DS
If you are interested in 3DS, contact your Shift4 API analyst for assistance. For additional information, see the 3D
Secure Standalone section in the REST API documentation.

paymentAPI Example for 3DS Support

To support the 3DS feature, paymentAPI and setting steps to include 3DS_STANDALONE are required.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 15 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone

3DS Testing
To ensure the 3DS implementation is working, it must be tested using the applicable test card numbers as outlined
here.

Important: When 3DS_STANDALONE is included in the
preauthorizeClient request, you cannot use non-3DS test card
numbers to test.

Requirement: When 3DS_STANDALONE or CARD_VERIFY is used,
then the cvv2Code attributes visible and required must be set to
true.

Note: If an international merchant uses Google Pay to attempt processing
a transaction and PAN only is returned as what is being used to process
the transaction, i4Go will attempt a 3DS call that includes
i4go_extendedcarddata.

Remember, if Apple Pay or Google Pay wallet payment is used for a
transaction, you must include i4go_extendedcarddata and
i4go_uniqueid in your payment request. Failure to do so may cause
the payment transaction to fail.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 16 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api#tag/3D-Secure-Smart-Adviser-Test-Triggers

Implementing Step 2
Step 2: The i4Go server returns an access block and the i4Go server address to the merchant's server. The
merchant's server must modify the values of the i4m initialization parameters to include the access block and to
post to the returned i4Go server address.

Please review these important details:

• For a successful preauthorizeClient request, this step returns i4go_response,
i4go_responsecode, i4go_countrycode, i4go_accessblock, and i4go_server.

o The returned access block must be entered as the corresponding value to the accessBlock
parameter.

o The returned i4Go server address must be entered as the corresponding value to the server
parameter.

Note: Modifying the values of the i4m initialization parameters is
demonstrated in the Sample Code - i4m Initialization and i4Go Exit
Parameters section.

Requirement: The merchant must add rate limiting logic at this point in
the process to protect against the iFrame being continuously refreshed in
an attempt to keep generating access blocks. For example, protect
against three access blocks being generated in one second and ten access
blocks being generated in one minute.

• For a failed preauthorizeClient request, this step returns i4go_response and
i4go_responsecode. (For additional information, see the Accepted i4Go Exit Parameters section.)

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 17 of 107

i4Go Technical Reference Guide

Implementing Step 3
Step 3: The CHD is entered on the payment information form (which is in an iFrame) and submitted directly to
i4Go. i4Go sends the CHD to LTM where it is replaced with a payment token.

Please review these important details:

• This step is initiated from the end user’s browser session.
• jQuery 3.x or greater is required.

Important: jQuery 2.x does not support Internet Explorer 6, 7, and 8. If
support for those browsers is needed, you will need to implement i4Go
using the AJAX Using JSON and Standard Direct Post implementation
methods. For additional information, see that section in this document.

• The i4m script must be in use, and it can be downloaded directly to the client by using the result in the
i4go_i4m_url parameter like [i4go_i4m_url]/js/jquery.i4goTrueToken.js.

• (Optional) To configure 3DS options, set the following:

o threeDSecure.challengeMode: Must be set to redirect or iframe. Default is
redirect. If an invalid value is sent, redirect will be used.

 redirect: This will redirect the entire page to 3DS.
 iframe: This will allow an iFrame to be displayed on the website.

o threeDSecure.iframeElementId: When threeDSecure.challengeMode is set to
iframe, the element ID is required to specify where the 3DS iFrame should be added to on the
website. If the element ID is not provided, shift4-3ds-iframe will be used and is the default. In
addition, the HTML element should have position: relative, CSS attribute, and a height
specified so that the iFrame displays properly. (The minimum window size that the 3DS API allows is
250px by 400px [width by height], so do not specify smaller than that.)

o threeDSecure.onOtpChallengeOpen: A callback function to indicate to the merchant’s
website that the OTP challenge was opened. (For example, it allows the merchant to open a modal
using their JavaScript library.)

o threeDSecure.onOtpChallengeClose: A callback function to indicate to the merchant’s
website that the OTP challenge was completed/closed. (For example, it allows the merchant to close
a modal using their JavaScript library.)

• (Optional) To support swiping payment cards when focus is anywhere on the page, the script must be in
use and it can be downloaded directly to the client by using the result in the i4go_i4m_url parameter
like [i4go_i4m_url]/js/jquery.cardswipe.js. If the script is not in use, then the end user must click inside
the iFrame before swiping the payment card.

• To support unencrypted MSRs, the encryptedOnlySwipe parameter must be set to false. If true,
then only P2PE swipe readers will be supported. (When set to false, unencrypted and encrypted MSRs
are supported.)

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 18 of 107

i4Go Technical Reference Guide

• To only support card entry by use of an approved, secure device, set deviceEntryOnly required
to true. By setting this to true, the card data will need to be captured on a card entry device (via
dipping, swiping, manual entry, etc.) to continue with the transaction process. If false, manual entry of
card data into the iFrame payment form will be allowed.

Tip: If you set deviceEntryOnly required to true, then you may
want to set cvv2Code visible, streetAddress visible, and
postalCode visible to false. This will allow the end user to
bypass having to enter these values into the iFrame since the encrypted
card reader will typically prompt for AVS and CVV when the payment card
is manually keyed into the device. Conversely, when the payment card is
swiped, the encrypted device will not prompt for AVS or CVV. Note that
the swiped payment card data will typically come with a carriage return
that will automatically submit the form.

• To support processing gift cards (including It’s Your Card® gift cards) without requiring the end user to
enter the card’s expiration date, set the JavaScript flag gcDisablesExpiration to true and pass it
to the iFrame. This will cause the Expiration field to be hidden in the iFrame when the end user selects
Gift Card from the Payment Type list. If the flag is set to false, the Expiration Date field will be displayed
in the iFrame regardless of which Payment Type is selected.

• To support processing gift cards (including It’s Your Card gift cards) without requiring the end user to
enter the card’s security code, set the JavaScript flag gcDisablesCVV2Code to true and pass it to
the iFrame. This will cause the Card Security Code field to be hidden in the iFrame when the end user
selects Gift Card from the Payment Type list. If the flag is set to false, the Card Security Code field will
be displayed in the iFrame regardless of which Payment Type is selected.

• Where you want the iFrame to be built, there must be an empty div with an id of i4goFrame.

Tip: The page that calls the iFrame can specify a width, and then the
content will stay within that width. If frameAutoResize is set to
true, the iFrame will expand vertically as needed. And while the content
within the iFrame is responsive, you will need to use the Bootstrap
templates and make the iFrame itself responsive. The responsive
calculations within the iFrame are based on the iFrame width.

• There must be a hidden object called i4goTrueToken, which is where all the configurations occur:

o server: Must be populated with the server address that is returned upon a successful
preauthorizeClient request.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 19 of 107

i4Go Technical Reference Guide

o accessBlock: Must be populated with the access block that is returned upon a successful
preauthorizeClient request.

o self: Must be set to document.location.
o template: Must be populated with the name of the template to be used (see the Example of i4Go

in an iFrame section for additional information):

 bootstrap3
 bootstrap3-horizontal
 bootstrap4
 bootstrap5
 bootstrap5-labeled
 shift4shop
 plain
 table

WARNING! The Bootstrap 5 template is not supported with Internet
Explorer 11 or earlier.

o url: Must be populated with the appropriate i4m server address:

 https://i4m.shift4test.com (for certification)
 https://i4m.i4go.com (for production)

Note: Developers should only use onSuccess and onFailure or
formAutoSubmitOnSuccess and formAutoSubmitOnFailure.

If the developer wants to control what happens when the tokenization
request was successful and failed, onSuccess and onFailure should
be used.

If the developer wants the merchant’s payment information form (not
the iFrame) to be automatically posted to the merchant’s server (does
not include any CHD), formAutoSubmitOnSuccess and
formAutoSubmitOnFailure should be used.

The latter option is the simplest implementation for developers who are
not JavaScript savvy.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 20 of 107

i4Go Technical Reference Guide

o One of the following options:

 onSuccess and onFailure: Must configure events for success and failure if using client side
event handling of the tokenization request.

 formAutoSubmitOnSuccess and formAutoSubmitOnFailure: Set to true to
automatically post the merchant’s payment information form (not the iFrame) to the merchant’s
server (does not include any CHD) if using server side event handling of tokenization events.

o (Optional) onError: If an error occurs within the iFrame (like the iFrame is submitted but a payment
card number was not entered), onError will return a JSON object that includes an errorCode of
400 and an errorList array of possible validation errors.

Requirement: If a timeout or null response is received, the process to
tokenize the payment information must begin again at step 1.

o (Optional) language: Set to the desired language. If not set, English is used.

 “en” for English
 “es” for Spanish
 “fr” for French
 “pt” for Portuguese
 “lt” for Lithuanian

Tip: For an example, see
https://myportal.shift4.com/index.cfm?action=development.i4mDemo.

o (Optional) i4goInfo: Set to false by default to hide the i4Go text and logo. May be set to true
to display the content, which is recommended by Shift4. (For additional information, see the Example
of i4Go in an iFrame section.)

o (Optional) The cardNumber field has attributes that can be changed:

 label
 placeholder
 message

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 21 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.i4mDemo

Note: When using the Table, Plain, Bootstrap3, or Shift4Shop templates
and wanting to change the label of the Expiration fields in the iFrame, the
expirationMonth and expirationYear labels are used.

When using Bootstrap4, Bootstrap4-lvloop, Bootstrap5, or Bootstrap5-
labeled template and wanting to change the label of the Expiration field
in the iFrame, the expiration label is used.

o (Optional) The expirationMonth and expirationYear fields have attributes that can be
changed:

 label
 placeholder
 message

o (Optional) The expiration field has attributes that can be changed:

 label
 placeholder
 message

Tip: The configured label, placeholder, and message text is
displayed to the end user. To support a different language, change the
configured text. In addition, you can modify cssRules to make the
iFrame match your site’s design.

o (Optional) The cardType, cvv2Code, cardholderName, streetAddress, and
postalCode fields also have attributes that can be changed:

 label
 placeholder
 message
 visible
 required

Note: The cardType option does not have a required field. If
visible is set to true, the field is required. For the cvv2Code,
cardholderName, streetAddress, and postalCode options, if
visible is set to false, the required setting is ignored.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 22 of 107

i4Go Technical Reference Guide

Requirement: When 3DS_STANDALONE or CARD_VERIFY is used,
then the cvv2Code attributes visible and required must be set to
true.

o (Optional) The submitButton (Secure My Payment Information) has the following attributes that
can be changed:

 label
 visible

Note: If you hide the submitButton by setting visible to false,
then you will need the following call from the parent page to the iFrame
to tokenize the information:

• i4goTrueTokenObj.submit();

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 23 of 107

i4Go Technical Reference Guide

Sample Code – jQuery, i4m, and cardswipe Scripts

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

<script src="[jQuery file]" type="text/javascript"></script>

<script src="https://i4m.i4go.com/js/jquery.i4goTrueToken.js" type="text/javascript"></script>

<script src="https://i4m.i4go.com/js/jquery.cardswipe.js" type="text/javascript"></script>

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 24 of 107

i4Go Technical Reference Guide

https://i4m.i4go.com/js/jquery.i4goTrueToken.%20js
https://i4m.i4go.com/js/jquery.cardswipe.js

Sample Code – i4m Initialization and i4Go Exit Parameters

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

var i4goTrueTokenObj = $("#form-main").i4goTrueToken({

url: "https://i4m.shift4test.com", // i4go server address. If not provided, value
will be calculated based on the "server" parameter. Defaults to https://i4m.i4go.com (production). Must
override for testing and certification to https://i4m.shift4test.com

server: "https://i4go-payment.shift4test.com", // REQUIRED - get this from
access.i4go.com (production) or access.shift4test.com (certification) call

accessBlock:
 "A0000,8DD3D28AC0813D6ADEECE5F9C78D9CAB26729AAE428F1DCECD138A61146D04C6DC9DC2649A67546D6A388DB81F2
578E22C5EF74D99D376E7CCF5A05B9CC9B081CAAEA735518E2ACF15D584DB3D66B4A10379A952E96A9611AD7E484E404E7798F0D27
DB7AF1AA4D1E56685252669BA7486FFD1F8C7A9D27C5C4D3454A9BCBBDE4A8422F025895F60E995D5BE0CCB6F3864AAEEEFDD415EA
1D8496C75F36F13CB0DF20C00EB619ADBF4892CE2A04FADA88D34CD36604C2DA839CCFDAEB8CEF396CD6429115192F4E4E1C0FAE52
E11CA16ADBE2C6D3C0E269309AC24FE60B431449EDC4BDF2A9A621BED6A1DB32A772D38443241BFCEB738E397B8A1C4A62035EA",
// REQUIRED - get this from access.i4go.com (production) or access.shift4test.com (certification) call)

self: document.location, // REQUIRED – use document.location or URL of the current
page. If URL used, it MUST MATCH EXACTLY INCLUDING QUERY PARAMETERS

template: "bootstrap4", // The template you want. (Currently defaults to bootstrap3-
horizontal. The Bootstrap 5 template is not supported with Internet Explorer 11 or earlier.)

// Options: bootstrap3, bootstrap3-horizontal, bootstrap4, bootstrap4-lvloop,
bootstrap5, bootstrap5-labeled, shift4shop, table, plain

threeDSecure: {

challengeMode: “iframe”,

iframeElementId: “shift4-3ds-iframe”,

onOtpChallengeOpen: function () {

console.log(“OTP challenge opened”);

// … your code here …

},

onOtpChallengeClose: function () {

console.log(“OTP challenge closed”);

// … your code here …

}

},

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 25 of 107

i4Go Technical Reference Guide

https://i4m.i4go.com/
https://i4m.shift4test.com/

gcDisablesExpiration: true, // Set to true to cause the Expiration field to be hidden in the
iFrame when the end user selects Gift Card from the Payment Type list. If the flag is set to false, the
Expiration field will be displayed in the iFrame regardless of which Payment Type is selected.

gcDisablesCVV2Code: true, // Set to true to cause the Card Security Code field to be hidden
in the iFrame when the end user selects Gift Card from the Payment Type list. If the flag is set to false,
the Card Security Code field will be displayed in the iFrame regardless of which Payment Type is selected.

encryptedOnlySwipe: true,

deviceEntryOnly: { classes:"", label:"", required:false }, // If you set required to true,
the card data will need to be captured via dipping, swiping, manual entry, etc. on a secure and approved
card entry device to continue with the transaction process. If false, manual entry of card data into the
iFrame payment form will be allowed. To customize the message displayed to the end user, use label.

frameContainer: "i4goFrame", // Only used if frameName does not exist

frameName: "", // Auto-assigned if left empty

frameAutoResize: true, // iframe will expand vertically as needed so content fits

submitButton: {

 label:"Secure My Payment Information"

 visible: true

}, // The text in quotes will be the text on the button. Button is hidden after submitting
form. Button can be visible or not; if not, then the following call is needed from the parent page to the
iFrame to tokenize the information: i4goTrueTokenObj.submit();

 frameClasses: "",

 formAutoSubmitOnSuccess: false,

 formAutoSubmitOnFailure: false,

onSuccess: function(form,data) {

console.log("i4goTrueToken- onSuccess()",data);

 },

onFailure: function(form,data) {

console.warn("i4goTrueToken- onFailure()",data);

 },

onComplete: function(form,data) {

console.log("i4goTrueToken- onComplete()",data);

 },

 onError: function(response) {

console.log("i4goTrueToken- onError()",response);

},

 //Wallet will asynchronously trigger individual callbacks.

onWalletInit: function(wallet:string, enabled:boolean, reason:string) {

 console.log("i4goTrueToken- onWalletInit()",wallet);

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 26 of 107

i4Go Technical Reference Guide

 },

//This is used for wallet support. See the Dynamic Shipping and Sales Tax section in Appendix D
for more information.

onPaymentDataChanged: function(iobj, intermediatePaymentData, paymentDataRequestUpdate) {

 console.log("i4goTrueToken- onPaymentDataChanged()",intermediatePaymentData);

 return paymentDataRequestUpdate;

 },

language: "en", // Set to desired language: en for English, es for Spanish, fr for
French, pt for Portuguese, and lt for Lithuanian. If not set, English is used.

acceptedPayments: "AX,DC,GC,JC,MC,NS,VS",

// Auto populated form fields. Precedence: field name, field id

formPaymentResponse: "customNameFori4go_response",

formPaymentResponseCode: "customNameFori4go_responsecode",

formPaymentResponseText: "customNameFori4go_responsetext",

formPaymentMaskedCard: "customNameFori4go_maskedcard",

formPaymentToken: "customNameFori4go_uniqueid",

formPaymentExpMonth: "customNameFori4go_expirationmonth",

formPaymentExpYear: "customNameFori4go_expirationyear",

formPaymentType: "customNameFori4go_cardtype",

formCardholderName: "customNameFori4go_cardholdername",

formStreetAddress: "customNameFori4go_streetaddress",

formPostalCode: "customNameFori4go_postalcode",

formMetaToken: "customNameFori4go_metatoken",

formExtendedCardData: "customNameFori4go_extendedcarddata",

formApplePayToken: "customNameFori4go_applepaytoken",

formGooglePayToken: "customNameFori4go_googlepaytoken",

 // Advanced Options

 /*

 payments: [

 { type: "VS", name: "Visa" },

 { type: "MC", name: "MasterCard" },

 { type: "AX", name: "American Express" },

 { type: "DC", name: "Diners Club" },

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 27 of 107

i4Go Technical Reference Guide

 { type: "NS", name: "Discover" },

 { type: "JC", name: "JCB" },

 { type: "GC", name: "Gift Card" }

],

 body: { styles:{ "background-color": "##aaa", borderLeft: "5px solid ##ccc" } },

 label: { classes:"control-label col-xs-4" },

 container: { classes:"" },

 cardType: { classes:"", label:"", placeholder:"", message:"", visible:true },

 // If visible, which is the default setting, it is required.

 cardNumber: { classes:"", label:"", placeholder:"", message:"" },

 // Always visible and always required.

 expirationMonth: { classes:"", label:"", placeholder:"", message:"" },

 // Always visible and always required.

 expirationYear: { classes:"", label:"", placeholder:"", message:"" },

 // Always visible and always required.

 cvv2Code: { classes:"", label:"", placeholder:"", message:"", visible:true,
required:true },

 // Can be visible or not; if visible, can be required or not. Default settings are visible and
required. If not visible, required setting is ignored. (If you set deviceEntryOnly required to true, and
you plan to require the card security code to be entered in the secure device, then you may want to set
cvv2Code visible to false. This will allow the end user to bypass having to enter the card security code
in the iFrame since it was already captured via the device.)

 cardholderName: { classes:"", label:"", placeholder:"", message:"", visible:false,
required:true },

 // Can be visible or not; if visible, can be required or not. Default setting is not visible,
which means required setting is ignored.

 streetAddress: { classes:"", label:"", placeholder:"", message:"", visible:false,
required:true },

 // Can be visible or not; if visible, can be required or not. Default setting is not visible,
which means required setting is ignored.

 postalCode: { classes:"", label:"", placeholder:"", message:"", visible:false,
required:true },

 // Can be visible or not; if visible, can be required or not. Default setting is not visible,
which means required setting is ignored.

 i4goInfo: { classes:"", label:"", visible:true, },

 // By default, set to false to hide the i4Go text and logo. May be set to true to display the
content, which is recommended by Shift4. (For additional information, see Appendix B.)

 cssRules: [

 "body{background-color: ##aaa;font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;}",

 "body{text-size: ""}"

 "label{color:##444;font-size:80%;font-weight:bold;}"

],

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 28 of 107

i4Go Technical Reference Guide

 // Debug flags: Simply creates additional console log messages

 // A debugger needs to be running to view. In no event does CHD get logged.

 debug: false, // If true, displays console messages. Parent side

 remoteDebug: false // If true, indicates width. Adds width indicators within the iframe
contents to help with frame sizing

 */

});

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 29 of 107

i4Go Technical Reference Guide

Sample Code – i4goFrame Div and challengeIframe Div

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

<div id="i4goFrame" style="width: 500px;"></div> // specify width to keep content within it

<div id="challengeIframe" class="modal-body" style="height:500px;position:relative"></div> // challenge
will be added as an iframe in the HTML div element

Note: The id (i.e., i4goFrame) can be changed, but it must match the
text that is configured in the frameContainer parameter.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 30 of 107

i4Go Technical Reference Guide

Implementing Step 4
Step 4: The i4Go exit parameters are returned and mapped to the appropriate vendor-supplied form fields.

Please review these important details:

• The form fields have the default names displayed below:

o i4go_response
o i4go_responsecode
o i4go_responsetext
o i4go_maskedcard
o i4go_uniqueid
o i4go_expirationmonth
o i4go_expirationyear
o i4go_cardtype
o i4go_cardholdername
o i4go_streetaddress
o i4go_postalcode
o i4go_extendedcarddata
o i4go_applepaytoken
o i4go_googlepaytoken
o i4go_signeddata

Note: This is where the i4Go exit parameters are returned so they can be
posted to the merchant’s Web server. The form field names are a part of
a hidden form and displayed in the Sample Code - i4m Initialization and
i4Go Exit Parameters section. This section of code is only used if the
developer would like to change the default names.

Important: Field names, as with most names in JavaScript, are case
sensitive.

Requirement: Use the value returned with i4go_uniqueid in the following
step. Do not use the i4go_utoken value.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 31 of 107

i4Go Technical Reference Guide

Sample Code – i4Go Exit Parameters

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

<form action="[merchant web server URL that processes the i4Go response, as per Implementing Step 5]"
method="post" style="display: none;">

 <input id="i4go_response" name="i4go_response" type="hidden" />

 <input id="i4go_responsecode" name="i4go_responsecode" type="hidden" />

 <input id="i4go_responsetext" name="i4go_responsetext" type="hidden" />

 <input id="i4go_cardtype" name="i4go_cardtype" type="hidden" />

 <input id="i4go_maskedcard" name="i4go_maskedcard" type="hidden" />

 <input id="i4go_uniqueid" name="i4go_uniqueid" type="hidden" />

 <input id="i4go_expirationmonth" name="i4go_expirationmonth" type="hidden" />

 <input id="i4go_expirationyear" name="i4go_expirationyear" type="hidden" />

 <input id="i4go_cardholdername" name="i4go_cardholdername" type="hidden" />

 <input id="i4go_streetaddress" name="i4go_streetaddress" type="hidden" />

 <input id="i4go_postalcode" name="i4go_postalcode" type="hidden" />

 <input id="i4go_extendedcarddata" name="i4go_extendedcarddata" type="hidden" />

</form>

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 32 of 107

i4Go Technical Reference Guide

Implementing Step 5
Step 5: The application uses the payment token (i4go_uniqueid) to process the transaction. (Note this step
happens outside of i4Go.)

Requirement: If tokenization included 3DS, results will be stored with the
i4go_uniqueid. If an Apple Pay or Google Pay wallet payment was
processed, you must include i4go_extendedcarddata and
i4go_uniqueid in your payment request. Failure to do so may cause
the payment transaction to fail.

Note: The process is not over at this point because the payment token
still needs to be authorized. This step happens outside of i4Go. For
additional information on the authorization process, which uses Shift4’s
UTG, see RESTful API in MyPortal API Corner.

Accepted i4Go Parameters
This section describes the accepted i4Go entry parameters developers will use for the preauthorizeClient
request. This section also describes the accepted i4Go exit parameters that will be used to return data to the
application.

Note: i4Go is not case sensitive with inbound parameter names.
Outbound parameter names will always be in lowercase. For example,
i4go_uniqueid.

Note: The Uniform Resource Identifier (URI) has a maximum limit of 2048
bytes in length.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 33 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api

i4Go Entry Parameters for the preauthorizeClient Request

Parameter Valid Value Required? Description

fuseaction
• account.preauthoriz

eClient
• Up to 255 bytes in length

Yes

Use the
fuseaction=account.preauthorizeCli
ent parameter to authorize the end user's IP
address to submit a transaction through i4Go.

When
fuseaction=account.preauthorizeCli
ent is in use, the i4go_clientip and
i4go_accesstoken parameter must be used
in conjunction.

i4go_clientip
• Numeric
• xxx.xxx.xxx.xxx
• Up to 255 bytes in length

Yes

Use the i4go_clientip parameter to post
the end user's public IP address to i4Go.

If the end user’s IP address falls in the following
ranges, then we substitute the requestor’s IP
address for the end user’s IP address because all
of these addresses are considered to be internal
addresses.

• 127.0.0.1/32
• 10.0.0.0/8
• 172.16.0.0/12
• 192.168.0.0/16

i4go_accesstoken • String
• Up to 255 bytes in length

Yes Use the i4go_accesstoken parameter to
post the merchant's Access Token to i4Go.

i4go_hs256key
• String
• Up to 100 characters in

length
No

Use the i4go_hs256key parameter to post the
merchant-defined value to i4Go, thus returning a
signed JWT to ensure the data is not tampered
with during the tokenization process.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 34 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

i4go_version • 2 or 3 No

Use the i4go_version parameter to specify if
the merchant is a US merchant or an international
merchant:

• 2: Use this for US merchants. The
request will be routed to the US
Gateway.

• 3: Use this for international
merchants. The request will be routed
to the International Gateway.

Note: If blank, 2, or a value other than 3 is
specified, the request will be routed to the US
Gateway.

Note: This can also be configured by Shift4,
negating the use of this parameter. For additional
information, contact your Shift4 API analyst.

i4go_basket Begin

i4go_basket • String Yes

Use the i4go_basket container to include
support for:

• Apple Pay and Google Pay wallets

• Card Verify

• 3DS

• Shift4 Risk Management Services

i4go_basket comprises a serialized JSON
string containing the following:

• OrderDetails

• Consumer

OrderDetails Begin

OrderNumber • String (50) Yes This represents your Order Number or transaction
identifier.

Amount • Numeric (20) Yes Total transaction amount with the decimal.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 35 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

CurrencyCode • String (3) Yes

Three-digit ISO 4217 value. Accepts either the
Currency Number or Currency Code (e.g., "840" or
"USD").

Note: The currency code will affect the currency
symbol displayed when an Apple Pay or a Google
Pay wallet is in use.

OrderDetails End

Consumer Begin

MobilePhone • String Maybe

If you are using Shift4 Risk Management Services
to perform a risk assessment, then use the
Consumer object to send the customer’s
MobilePhone.

If you are not using Shift4 Risk Management
Services but you are using the Card Verify feature,
then you do not need to use this as the
information required for the feature’s use will be
collected via i4Go’s use.

Email1 • String Maybe

If you are using Shift4 Risk Management Services
to perform a risk assessment, then use the
Consumer object to send the customer’s
Email1 (i.e., their email address).

If you are not using Shift4 Risk Management
Services but you are using the Card Verify feature,
then you do not need to use this as the
information required for the feature’s use will be
collected via i4Go’s use.

Email2 • String Maybe

If you are using Shift4 Risk Management Services
to perform a risk assessment, then use the
Consumer object to send the customer’s
Email2 (i.e., their alternate email address).

If you are not using Shift4 Risk Management
Services but you are using the Card Verify feature,
then you do not need to use this as the
information required for the feature’s use will be
collected via i4Go’s use.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 36 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

BillingAddress • String Maybe

If you are using Shift4 Risk Management Services
to perform a risk assessment, then use the
BillingAddress object to send the
customer’s billing information.

If you are not using Shift4 Risk Management
Services but you are using the Card Verify feature,
then you do not need to use this as the
information required for the feature’s use will be
collected via i4Go’s use.

BillingAddress comprises a serialized JSON
string containing the following:

• FirstName

• LastName

• Address1

• Address2

• City

• State

• PostalCode

• CountryCode

• Phone1

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 37 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

ShippingAddress • String Maybe

If you are using Shift4 Risk Management Services
to perform a risk assessment, then use the
ShippingAddress object to send the
customer’s shipping information.

If you are not using Shift4 Risk Management
Services but you are using the Card Verify feature,
then you do not need to use this as the
information required for the feature’s use will be
collected via i4Go’s use.

ShippingAddress comprises a serialized
JSON string containing the following:

• FirstName

• LastName

• Address1

• Address2

• City

• State

• PostalCode

• CountryCode

• Phone1

Consumer End

i4go_basket End

paymentAPI Begin

paymentAPI • string No

Use the paymentAPI JSON field to include
support for Card Verify and/or 3DS.

paymentAPI comprises a serialized JSON string
containing the following:

• steps

The steps field allows for an array of strings so
one or both valid values may be included:

• CARD_VERIFY

• 3DS_STANDALONE

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 38 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

CARD_VERIFY Begin

transaction.invoice

• String
• Up to 10 characters in

length
No

The 10-digit invoice number assigned by the
interface to identify a transaction. An invoice
number serves as a unique key that identifies a
transaction within a batch in Shift4's Gateway.

transaction.notes
• String
• Up to 4096 characters in

length
No

A free-form notes field that supports the use of
HTML tags. This can be used for reference
in LTM and is not sent to the authorization host.
Escaped quotation marks should not be sent in
the Notes field.

transaction.vendorRef
erence

• String
• Up to 50 characters in

length
No Optional field for information that can be

searched in the merchant portal.

transaction.cardOnFil
e.type • String No

This field specifies the type of the card-on-file
transaction.

See the REST API documentation for details.

transaction.cardOnFil
e.recurringExpiry

• String
• YYYYMMDD Maybe

Date after which no further authorizations shall
be performed. This field is limited to 8 characters,
and the accepted format is YYYYMMDD.

Conditional: This field is required if it’s the first
recurring transaction (cardOnFile.type is
S02). This field is not needed if the transaction is
not recurring or if the transaction is a subsequent
recurring transaction.
See the REST API documentation for details.

transaction.cardOnFil
e.recurringFrequency • String Maybe

Conditional: This field is required if it’s the first
recurring transaction (cardOnFile.type is
S02). This field is not needed if the transaction is
not recurring or if the transaction is a subsequent
recurring transaction

See the REST API documentation for details.

transaction.cardOnFil
e.transactionId

• String
• Up to 15 characters No

This field is returned in the initial cardOnFile
response, and ties subsequent cardOnFile
transactions to the original authorization.

CARD_VERIFY End

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 39 of 107

i4Go Technical Reference Guide

https://ltm.shift4test.com/
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/cardsverify
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/cardsverify
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/cardsverify

Parameter Valid Value Required? Description

3DS_STANDALONE Begin

threeDSecure.initiate • String Yes

Indicates whether to initiate the 3DS
authentication process.

See the REST API documentation for details.

threeDSecure.challeng
eWindowSize • String Yes

Dimensions of the challenge window that will be
displayed to the cardholder. The issuer replies
with content that is formatted to appropriately
render in this window to provide the best possible
user experience. Preconfigured window sizes are
given in “width x height” in pixels.

See the REST API documentation for details.

threeDSecure.transTyp
e • String Yes

Identifies the type of transaction being
authenticated. The values are derived from ISO
8583.

See the REST API documentation for details.

threeDSecure.addressM
atch • String Yes

Indicates whether the Cardholder Shipping
Address and Cardholder Billing Address are
identical.

See the REST API documentation for details.

threeDSecure.reqChall
engeInd • String Yes

Indicates whether a challenge is requested for this
transaction. For example, for payment
authentication, a merchant may have concerns
about the transaction and request a challenge.

See the REST API documentation for details.

transaction.invoice • String
• Up to 10 characters

Yes

The 10-digit invoice number assigned by the
interface to identify a transaction. An invoice
number serves as a unique key that identifies a
transaction within a batch in Shift4's Gateway.

transaction.notes • String
• Up to 4096 characters

No

A free-form notes field that supports the use of
HTML tags. This can be used for reference
in LTM and is not sent to the authorization host.
Escaped quotation marks should not be sent in
the Notes field.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 40 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone
https://myportal.shift4.com/index.cfm?action=development.shift4api#operation/3dsecurestandalone
https://ltm.shift4test.com/

Parameter Valid Value Required? Description

transaction.vendorRef
erence

• String
• Up to 50 characters

No Optional field for information that can be
searched in the merchant portal.

3DS_STANDALONE End

paymentAPI End

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 41 of 107

i4Go Technical Reference Guide

OrderDetails Object Example
{

 "OrderDetails": {

 "OrderNumber": "",

 "Amount": "",

 "CurrencyCode": ""

 },

}

paymentAPI and 3DS_STANDALONE Example

{

 "paymentAPI": {

 "steps": [

 "3DS_STANDALONE"

],

 "transaction": {

 "invoice": "0000000001",

 "notes": "Testing 3DS Standalone in i4Go",

 "vendorReference": "TestVendorRef"

 },

 "threeDSecure": {

 "challengeWindowSize": "05",

 "initiate": "01",

 "transType": "01"

 }

 }

}

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 42 of 107

i4Go Technical Reference Guide

paymentAPI and CARD_VERIFY Example
{

 "paymentAPI": {

 "steps": [

 "CARD_VERIFY"

],

 "transaction": {

 "cardOnFile": {

 "type": "S01"

 }

 }

 }

}

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 43 of 107

i4Go Technical Reference Guide

Accepted i4Go Exit Parameters
The accepted i4Go exit parameters returned in JSON format by i4Go are described and defined in the following
table.

Parameter Valid Value When Returned? Description

i4go_response

• SUCCESS or
FAILURE

• Up to 255 bytes
in length

Always The i4go_response parameter is used to return
i4Go’s Response Message.

i4go_responsecode

• Numeric list of
one or more
numbers

• Up to 255 bytes
in length

Always

The i4go_responsecode parameter is used to
return all applicable i4Go Response Codes. For
example:

• 1 = SUCCESS

• 301 = Not authorized

For a complete list of Response Codes and
Messages, please see Appendix A.

i4go_countrycode
• String

• 2 bytes in length
Always

The i4go_countrycode parameter is used to
return the two-character country code as assigned
by iana.net and other Internet address authorities.
For example:

• us = United States

• ?? = Unknown

Note: International Organization for
Standardization (ISO) Alpha-2 country codes are
returned. Shift4 has seen at least two unofficial
country codes (for example, AP) returned from
Internet address authorities, which should be
treated as unknown country codes.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 44 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

i4go_accessblock

• String

• Up to 1024
bytes in length

Successful
preauthorizeCli

ent Request

The i4go_accessblock parameter is used to
return i4Go's access block.

i4go_server

• String

• Up to 128 bytes
in length

Successful
preauthorizeCli

ent Request

The i4go_server parameter is used to return
the name of the i4Go server.

i4go_i4m_url

• String

• Up to 128 bytes
in length

Successful
preauthorizeCli

ent Request

The i4go_i4m_url parameter is used to return
the name of the iFrame URL.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 45 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

i4go_responsetext

• String

• Up to 255 bytes
in length

 Tokenization Request

The i4go_responsetext parameter is used to
return a user friendly description that details why
the request failed. If the request was successful,
nothing is returned with the parameter.

i4go_maskedcard

• Asterisks and
numeric

• Up to 20 bytes
in length

Successful
Tokenization Request

The i4go_maskedcard parameter is used to
return the masked payment card number. In
addition, it can be used to display the information
to the end user. For example, ********1119.

i4go_uniqueid

• String

• 16 bytes in
length

Successful
Tokenization Request

The i4go_uniqueid parameter is used to return
the payment token (which can be a TrueToken® or a
Global Token Vault [GTV] token).

The application will use and store the payment
token to process the transaction.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 46 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

i4go_expirationmonth

• 1 or 2 Numeric
Digits

• Up to 2 bytes in
length

Successful
Tokenization Request

The i4go_expirationmonth parameter is
used to return the expiration month of the
payment card. For example, 04 - April is returned as
04.

i4go_expirationyear

• 2 or 4 Numeric
Digits

• Up to 4 bytes in
length

Successful
Tokenization Request

The i4go_expirationyear parameter is used
to return the expiration year of the payment card.
For example, 2025 is returned as 2025.

i4go_cardtype

• VS, MC, AX,
DC, NS, JC, YC,
GC, and PL

• Up to 2 bytes in
length

Successful
Tokenization Request

The i4go_cardtype parameter is used to return
the two-character code that identifies the payment
card type being used. For example:

• VS - Visa

• MC - MasterCard

• AX - American Express

• DC - Diners Club/Carte Blanche

• NS - Novus/Discover

• JC - Japanese Credit Bureau (JCB)

• YC - IT'S YOUR CARD

• GC - Gift Card

• PL - Private Label Payment Card

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 47 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

i4go_cardholdername

• String

• Up to 255 bytes
in length

Successful
Tokenization Request

The i4go_cardholdername parameter is used
to return the name on the payment card, as
entered by the end user, to i4Go. Or, when Apple
Pay/Google Pay is used as the payment method on
the transaction, then the billing/shipping name
from the associated wallet will be returned.

i4go_postalcode

• String

• Up to 20 bytes
in length

Successful
Tokenization Request

The i4go_postalcode parameter is used to
return the postal/ZIP code from the address that
corresponds to the payment card, as entered by
the end user, to i4Go.

i4go_streetaddress

• String

• Up to 50 bytes
in length

Successful
Tokenization Request

The i4go_streetaddress parameter is used
to return the numerical portion of the street
address that corresponds to the payment card, as
entered by the end user, to i4Go.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 48 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

i4go_extendedcarddata

• String

• Up to 8192
bytes in length

Successful
Tokenization Request

as Required

The i4go_extendedcarddata parameter is
used to return extended card authentication data
that corresponds to Apple Pay and Google Pay
wallets support.

i4go_applepaytoken

• String

• Up to 4096
bytes in length‡

Successful
Tokenization Request

and Apple Pay Was
Used

This is optional and is a serialized JSON string
representing the raw Apple Pay token that i4Go
received.

This token contains additional payment or
cardholder information your application can
leverage. This information is only returned if Apple
Pay was used. For additional information, see Apple
Pay documentation at:
https://developer.apple.com/documentation/apple
_pay_on_the_web/applepaypaymentmethodselect
edevent/1778025-paymentmethod.

i4go_googlepaytoken

• String

• Up to 4096
bytes in length‡

Successful
Tokenization Request
and Any Wallet Was

Used

This is optional and is a serialized JSON string
representing the raw Google Pay token (or a
mimicked representation from an Apple Pay token)
that i4Go received.

This information is only returned if Google Pay or
Apple Pay was used. For additional information, see
Google Pay documentation at:
https://developers.google.com/pay/api/web/refer
ence/response-objects.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 49 of 107

i4Go Technical Reference Guide

https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodselectedevent/1778025-paymentmethod
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodselectedevent/1778025-paymentmethod
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodselectedevent/1778025-paymentmethod
https://developers.google.com/pay/api/web/reference/response-objects
https://developers.google.com/pay/api/web/reference/response-objects

Parameter Valid Value When Returned? Description

i4go_signeddata • JWT
Successful

Tokenization Request
as Required

When i4go_hs256key is used, the
i4go_signeddata parameter is used to return
the corresponding JWT. (The JWT’s signature can
then be verified before attempting to submit the
transaction. For additional information on JWT, see
https://jwt.io/.)

‡A maximum length of 4096 bytes should be safe; however, this is not controlled by Shift4.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 50 of 107

i4Go Technical Reference Guide

https://jwt.io/

risk Object Details

If you are using Shift4 Risk Management Services to perform a risk assessment during the i4Go tokenization
process, then your response will also include the risk object.

Parameter Valid Value When Returned? Description

dateTime • String
Successful

Tokenization Request

The dateTime parameter is used to return the
information in ISO 8601 format including the
timezone offset (yyyy-mm-
ddThh:mm:ss.nnn+hh:mm) of when the risk
assessment was submitted.

amount See Description. Successful
Tokenization Request

The amount object is used to return the following:

• total
• tax

The total is the total amount submitted for the
risk assessment, including tax. The valid values
are:

• Numeric
• Up to 14 bytes in length

server See Description. Successful
Tokenization Request

The server object is used to return the following:

• name

The name is the risk assessment’s server name. The
valid value for it is:

• String

correlationId
• String
• Up to 36 bytes

in length

Successful
Tokenization Request

The correlationId parameter is used to return
the Correlation ID, which is a value used to
correlate transactions together for reporting
purposes.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 51 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

risk See Description. Successful
Tokenization Request

The risk object contains the following:

• tranId
• assessment

The tranId parameter is used to return the
unique transaction ID for this response. Store this
value and use it to find additional details.

The assessment parameter is used to return the
result of the risk assessment, and it will include one
of the following:

• A: Approve
• D: Deny|
• R: Review
• E: Escalate|

The valid value for them is:

• String

|If D or E is retuned as the result, it will cause a
301 (Not authorized) to be returned in the
i4go_responsecode parameter.

transaction See Description. Successful
Tokenization Request

The transaction object contains the following:

• s4RiskId
• invoice

The s4RiskId parameter is used to return the
unique transaction identification number
generated by Shift4 to identify a specific risk
transaction.

The valid value for it is:

• String

The invoice parameter is used to return the
invoice number assigned by the interface to
identify a transaction.

The valid values for it are:

• String
• Up to 10 bytes in length

currencyCode • String
• 3 characters

Successful
Tokenization Request

The currencyCode parameter is used to return the
three-digit ISO 4217 value, either the Currency
Number or Currency Code (e.g., 840 or USD).

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 52 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

card See Description. Successful
Tokenization Request

The card object contains the token object, which
contains the following:

• value

The value parameter is used to return the
payment token.

The valid values for it are:

• String

• 16 bytes in length

risk Object Example

"risk": {

 "dateTime": "2023-04-28T07:42:01.685868-08:00",

 "amount": {

 "total": 50,

 "tax": 0

 },

 "server": {

 "name": "KNDEV1"

 },

 "correlationId": "EAD9584E-D689-420D-88F4-955706DA2F33",

 "risk": {

 "tranId": "KHVT0CRXVJRR",

 "assessment": "A"

 },

 "transaction": {

 "s4RiskId": "D31698F0-B6A6-43C4-A408-EEA0FD282BF5",

 "invoice": "Z100009020"

 },

 "currencyCode": "USD",

 "card": {

 "token": {

 "value": 8053679897173332

 }

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 53 of 107

i4Go Technical Reference Guide

Example of i4Go in an iFrame
To render an example of i4Go in an iFrame, click here and then click on the available templates, options, and
languages.

Note: The example displays what is possible. Based on defaults or
changes you make to the code, some fields may or may not be displayed.
In addition, you can change the width using i4goFrame.

WARNING! The Bootstrap 5 template is not supported with Internet
Explorer 11 or earlier.

Implementing Apple Pay and Google Pay Wallets
Wallets provide cardholders a friendly, consistent, and simple user experience.

Before implementing wallets to an i4Go integrated application, we STRONGLY recommend you start with a
working i4Go integration first. Adding wallet support to an existing i4Go integration is very easy and the changes
are detailed here.

Apple Pay

What is Apple Pay?
Apple Pay is easy and works with the Apple devices you use every day. You can make contactless, secure purchases
in stores, in apps, and on the web. And you can send and receive money from friends and family right in Messages.
Apple Pay is a safer way to pay, and even simpler than using your physical card.

Apple Pay Prerequisites
Before adding Apple Pay to your application, you must read, understand, follow, and accept the Apple Pay on the
Web: Acceptable Use Guidelines. These guidelines are published and mandated by Apple and are outside the
control of Shift4.

Apple Pay does require proof of domain ownership prior to assigning credentials. This process is detailed in the
Step 1 – Account Setup section below.

For more information, see Apple Pay on the Web Overview.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 54 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.i4mdemo
https://developer.apple.com/apple-pay/acceptable-use-guidelines-for-websites/
https://developer.apple.com/apple-pay/acceptable-use-guidelines-for-websites/
https://developer.apple.com/documentation/apple_pay_on_the_web

Google Pay

What is Google Pay?
Google Pay brings together all the ways you can pay with Google.

Enter your card information once and use it to:

• Tap and pay to make purchases with your phone (see country and device availability).
• Buy items in apps and on websites (see country availability).
• Fill in forms automatically on Chrome.
• Buy Google products.
• Send money to friends and family (US only).

You can also use your gift cards, loyalty cards, tickets, and coupons with Google Pay when you shop at your
favorite stores.

Google Pay Prerequisites
Before adding Google Pay to your application, you must review and adhere to the following Google Pay API Terms
of Service, Acceptable Use Policy, and Brand Guidelines. These guidelines are published and mandated by Google
and are outside the control of Shift4.

In addition, the following documents can be used for reference: Google Pay Web Developer
Documentation, Google Pay Web Integration Checklist, and Google Pay for Payments Overview.

Implementing Wallets
Now that you have completed your i4Go integration for tokenizing cardholder data, it is time to add wallet
support. The wallets, Apple Pay and Google Pay, will allow for a much quicker and streamlined user experience,
along with adding an additional security layer for your customers.

This section assumes you have an understanding of the i4Go API and a working i4Go integration. Only details for
implementing wallet support to your interface are included below.

Step 1 – Account Setup
Before requesting Apple Pay and/or Google Pay setup and credentials, go through and thoroughly read and
understand the prerequisites detailed previously.

Shift4 is in the process of making the setup process and the request for development/testing and production
credentials self-serve, but that is under development. Until this is available, you will need to speak directly to your
Shift4 representative for account setup and credentials. Please check back for further updates as this is a work in
progress.

Apple Pay does require proof of domain ownership prior to assigning credentials. Before Apple Pay credentials can
be assigned, you will be provided a file from Shift4 and instructions on where to put them on your server (located
here). The file is for proof of domain ownership and does not contain any sensitive information. The file should
remain on the server(s) even after ownership confirmation.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 55 of 107

i4Go Technical Reference Guide

https://payments.developers.google.com/terms/sellertos
https://payments.developers.google.com/terms/sellertos
https://payments.developers.google.com/terms/aup
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/web/
https://developers.google.com/pay/api/web/
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/overview
https://myportal.shift4.com/downloads/verification.zip

Step 2 – CSS and JavaScript – Adding Additional Includes
i4Go wallet support required the addition of two Shift4 include files: a style sheet (CSS) and a JavaScript (JS) file.
They can be downloaded directly to the client from:

• https://i4m.i4go.com/css/wallets.css
• https://i4m.i4go.com/js/wallets.js

In addition, for Google Pay support, a Google JavaScript (JS) file is required:

• https://pay.google.com/gp/p/js/pay.js

Sample Code

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

<link rel="stylesheet" type="text/css" href="https://i4m.i4go.com/css/wallets.css">

<script src="https://i4m.i4go.com/js/wallets.js" type="text/javascript"></script>

<script src="https://pay.google.com/gp/p/js/pay.js" type="text/javascript"></script>

Step 3 - i4GoTrueToken Initiation
When including wallet support, we have added the following:

• onWalletInit: function(wallet:string, enabled:boolean, reason:string):
This is optional. Wallet will asynchronously trigger individual callbacks.

• i4go_extendedcarddata: This is required. You must receive the extended card data and pass it to
your Shift4 payment request. Failure to pass the information will result in authorization failures and
settlement downgrades (higher rates). The result is supplied into the extendedcarddata field of the
Shift4 API.

• i4go_applepaytoken: This is optional and is a serialized JSON string representing the raw Apple Pay
token that i4Go received. This token contains additional payment or cardholder information your
application can leverage. This information is only returned if Apple Pay was used. For additional
information, see Apple Pay documentation at:
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodselected
event/1778025-paymentmethod.

• i4go_googlepaytoken: This is optional and is a serialized JSON string representing the raw Google
Pay token (or a mimicked representation from an Apple Pay token) that i4Go received. This information is
only returned if Google Pay or Apple Pay was used. For additional information, see Google Pay
documentation at: https://developers.google.com/pay/api/web/reference/response-objects.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 56 of 107

i4Go Technical Reference Guide

https://i4m.i4go.com/css/wallets.css
https://i4m.i4go.com/js/wallets.js
https://pay.google.com/gp/p/js/pay.js
https://i4m.i4go.com/css/wallets.css
https://i4m.i4go.com/js/wallets.js
https://pay.google.com/gp/p/js/pay.js
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodselectedevent/1778025-paymentmethod
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentmethodselectedevent/1778025-paymentmethod
https://developers.google.com/pay/api/web/reference/response-objects

Sample Code

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

…

// Wallet event

onWalletInit: function(wallet:string, enabled:boolean, reason:string) {

console.log("i4goTrueToken- onWalletInit()",wallet);

},

// Auto populated form fields. Precedence: field name, field id

formPaymentResponse: "customNameFori4go_response",

formPaymentResponseCode: "customNameFori4go_responsecode",

formPaymentResponseText: "customNameFori4go_responsetext",

formPaymentMaskedCard: "customNameFori4go_maskedcard",

formPaymentToken: "customNameFori4go_uniqueid",

formPaymentExpMonth: "customNameFori4go_expirationmonth",

formPaymentExpYear: "customNameFori4go_expirationyear",

formPaymentType: "customNameFori4go_cardtype",

formCardholderName: "customNameFori4go_cardholdername",

formStreetAddress: "customNameFori4go_streetaddress",

formPostalCode: "customNameFori4go_postalcode",

formExtendedCardData: "customNameFori4go_extendedcarddata",

formApplePayToken: "customNameFori4go_applepaytoken",

formGooglePayToken: "customNameFori4go_googlepaytoken",

…

Step 4 – HTML – Adding Buttons
We’re to the easiest part. Simply include one or both buttons in your HTML code. The buttons are hidden by
default and will only reveal themselves if the associated wallet is available. Feel free to add your own style to the
buttons, just be sure you refer to the branding guidelines (see the Apple Pay Prerequisites or Google Pay
Prerequisites section).

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 57 of 107

i4Go Technical Reference Guide

Sample Code

WARNING! The sample code was designed for demonstration purposes
only. While you can use this code as a template, additional code will most
likely need to be added to make this sample “production ready.”

<button class="pay-button pay-hidden apple-pay-button"></button>

<button class="pay-button pay-hidden google-pay-button"></button>

Step 5 – Test
Test your integration to ensure it works.

Step 6 – Advanced Features
For most of the advanced wallet features, i4Go uses Google Pay as the standard. Meaning, if you code for Google
Pay (with very few or no exceptions) you will receive Apple Pay compatibility.

We chose this path because in our view, Google Pay seems to have more developer friendly documentation. Also,
developers have a wider selection of developer and debugging tools whereas Apple Pay is limited to tools running
in iOS only.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 58 of 107

i4Go Technical Reference Guide

Google Pay Button Styles

Google Pay controls the button styles via JavaScript settings, which are passed through our i4goTrueToken
settings.

wallet: {

 // For the following button attributes, see Google documentation. Default settings used when
left empty.

 buttonColor: "", // default: A Google-selected default value. Currently black
but it may change over time (default).

 // black: A black button suitable for use on white or light
backgrounds.

 // white: A white button suitable for use on colorful
backgrounds.

 buttonType: "", // buy: "Buy with Google Pay" button (default).

 // donate: "Donate with Google Pay" button.

 // plain: Google Pay button without additional text.

 // translated button label may appear if a language specified
in the viewer's browser matches an available language.

 buttonSizeMode: "", // static: Button has a static width and height (default).

 // fill: Button size changes to fill the size of its container.

 buttonRootNode: "" // HTMLDocument or ShadowRoot

}

For additional information, see Google Pay documentation at:
https://developers.google.com/pay/api/web/reference/request-objects#ButtonOptions.

Apple Pay Button Styles

Apple Pay controls the button styles via CSS classes, which you add directly to the button tag. For additional
information, see Apple Pay documentation at:
https://developer.apple.com/documentation/apple_pay_on_the_web/styling_the_apple_pay_button_with_css.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 59 of 107

i4Go Technical Reference Guide

https://developers.google.com/pay/api/web/reference/request-objects#ButtonOptions
https://developer.apple.com/documentation/apple_pay_on_the_web/styling_the_apple_pay_button_with_css

Name, Address, and Static Shipping Options

The wallets can optionally return information from the cardholder, including: name, email address, phone number,
and shipping address. Any or all of these fields can be required. Due to various local, state, and federal personally
identifiable information (PII) laws, it is recommended that you only require what you need to fulfill your order. In
other words, if you are not shipping goods, do not require shipping information as this would simply increase your
liability scope for PII.

wallet: {

 nameRequired: null, // true/false/null - null uses addressRequired

 addressRequired: false,

 emailRequired: false,

 phoneNumberRequired: false,

 allowedCountryCodes: [],

shippingOptionRequired: false,

 shippingOptions: [], // first option will be the default

 shippingType: "shipping" // shipping, delivery, storePickup, servicePickup

}

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 60 of 107

i4Go Technical Reference Guide

Dynamic Shipping and Sales Tax

Dynamic shipping and sales tax support is an extension of the prior Name, Address, and Static Shipping Options
section. The difference between static and dynamic is that dynamic requires an additional event to be defined in
order to support this feature. The feature allows for shipping options to change based on different shipping
addresses being selected and provided by the cardholder within the wallet.

For example, if the cardholder selects to use their home address, one set of shipping options is made available. If
the cardholder changes the shipping address to a work address or a hotel address, a different set of shipping
options are displayed. In both these cases, the appropriate sales tax is applied to the order.

Tip: Before adding dynamic shipping and sales tax options, get the prior
Name, Address, and Static Shipping Options section working first.

wallet: {

 nameRequired: null, // true/false/null - null uses addressRequired.

 addressRequired: false,

 emailRequired: false,

 phoneNumberRequired: false,

 allowedCountryCodes: [],

shippingOptionRequired: false,

 shippingOptions: [], // first option will be the default.

 shippingType: "shipping" // shipping, delivery, storePickup, servicePickup

}

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 61 of 107

i4Go Technical Reference Guide

AJAX Using JSON and Standard Direct Post
Shift4 recommends a combination of both technologies be implemented: AJAX using JSON for a seamless
integration with better communication error trapping than Standard Direct Post, and Standard Direct Post as a
fallback in the event that scripting is disabled on the client browser.

AJAX Using JSON
To implement i4Go using this method, there are five key steps; each step requires developers to implement certain
functionality to ensure the payment information is tokenized. The five steps are briefly outlined below and
described in greater detail in the following subsections.

Requirement: The payment information must be tokenized for each
transaction in order to benefit from reduced PCI DSS scope.

Note: Step 1 is initiated from the merchant’s Web server.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 62 of 107

i4Go Technical Reference Guide

 A purchase is initiated at the point of sale in an internet browser-based environment. The end user's IP
address is sent with the merchant's Access Token through the merchant's server to the i4Go server, thus
requesting authorization† for Step 4.

• This step requires the use of fuseaction=account.authorizeClient, i4go_clientip, and
i4go_accesstoken posted to https://access.shift4test.com (for certification) or
https://access.i4go.com (for production). (The response will be JSON. For additional information, see the
i4Go Entry Parameters for the authorizeClient Request section.)

Requirement: Any call to https://access.shift4test.com or
https://access.i4go.com must be direct posted and cannot be JSON or
XML. In addition, developers must ensure the application retains a log of
all authorization requests, including the client IP address, for
troubleshooting purposes.

 The i4Go server returns an access block and the i4Go server address to the merchant's server. The merchant's
server must modify the payment information form to include the access block and to post to the returned
i4Go server address.

• For a successful authorizeClient request, this step returns i4go_response,
i4go_responsecode, i4go_countrycode, i4go_accessblock, and i4go_server.

• For a failed request, this step returns i4go_response and i4go_responsecode.

 The CHD is entered on the payment information form.

Note: Step 4 is initiated from the end user’s browser session.

 Over an encrypted connection, the CHD and access block are directly submitted from the end user’s browser
to the i4Go server address that is returned with the i4go_server parameter. i4Go sends the encrypted
CHD to Shift4’s PCI DSS-compliant LTM gateway where it is replaced with a payment token.

• This step requires the use of the parameters in the i4Go Entry Parameters for the Tokenization Request
table and i4go_accessblock.

 LTM returns the payment token to the i4Go server. The i4Go server returns the payment token to the
browser.

• For a successful tokenization request, this step returns i4go_response, i4go_responsecode,
i4go_cardtype, i4go_uniqueid, i4go_expirationmonth, and i4go_expirationyear.

• For a failed request, this step returns i4go_response and i4go_responsecode.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 63 of 107

i4Go Technical Reference Guide

https://access.shift4test.com/
https://access.i4go.com/
https://access.shift4test.com/
https://access.i4go.com/

Requirement: If a timeout or null response is received, the process to
tokenize the payment information must begin again at step 1.

Note: It is important to note the process is not over at this point because
the payment token still needs to be authorized. For additional
information on the authorization process, which uses Shift4’s UTG, see
RESTful API in MyPortal API Corner.

†This will attempt to authorize the end user's IP address to submit a single transaction through i4Go, regardless of
where in the world the end user resides.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 64 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api

Standard Direct Post
To implement i4Go using this method, there are five key steps; each step requires developers to implement certain
functionality to ensure the payment information is tokenized. The five steps are briefly outlined below and
described in greater detail in the following subsections.

Tip: If JavaScript is enabled, use the AJAX using JSON implementation
method, as it provides better error handling.

Requirement: The payment information must be tokenized for each
transaction in order to benefit from reduced PCI DSS scope.

Note: Step 1 is initiated from the merchant’s Web server.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 65 of 107

i4Go Technical Reference Guide

 A purchase is initiated at the point of sale in an internet browser-based environment. The end user's IP
address is sent with the merchant's Access Token through the merchant's server to the i4Go server, thus
requesting authorization† for Step 4.

• This step requires the use of fuseaction=account.authorizeClient, i4go_clientip, and
i4go_accesstoken posted to https://access.shift4test.com (for certification) or
https://access.i4go.com (for production). (The response will be JSON. For additional information, see the
i4Go Entry Parameters for the authorizeClient Request section.)

Requirement: Any call to https://access.shift4test.com or
https://access.i4go.com must be direct posted and cannot be JSON or
XML. In addition, developers must ensure the application retains a log of
all authorization requests, including the client IP address, for
troubleshooting purposes.

 The i4Go server returns an access block and the i4Go server address to the merchant's server. The merchant's
server must modify the payment information form to include the access block and to post to the returned
i4Go server address.

• For a successful authorizeClient request, this step returns i4go_response,
i4go_responsecode, i4go_countrycode, i4go_accessblock, and i4go_server.

• For a failed request, this step returns i4go_response and i4go_responsecode.

 The CHD is entered on the payment information form.

Note: Step 4 is initiated from the end user’s browser session.

 Over an encrypted connection, the CHD and access block are directly submitted from the end user’s browser
to the i4Go server address that is returned with the i4go_server parameter. i4Go sends the encrypted
CHD to Shift4’s PCI DSS-compliant LTM gateway where it is replaced with a payment token.

• This step requires the use of the parameters in the i4Go Entry Parameters for the Tokenization Request
table and i4go_accessblock.

 LTM returns the payment token to the i4Go server. The i4Go server returns the payment token to the
merchant's server.

• For a successful tokenization request, this step returns i4go_response, i4go_responsecode,
i4go_cardtype, i4go_uniqueid, i4go_expirationmonth, and i4go_expirationyear.

• For a failed request, this step returns i4go_response and i4go_responsecode.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 66 of 107

i4Go Technical Reference Guide

https://access.shift4test.com/
https://access.i4go.com/
https://access.shift4test.com/
https://access.i4go.com/

Note: It is important to note the process is not over at this point because
the payment token still needs to be authorized. For additional
information on the authorization process, which uses Shift4’s UTG, see
RESTful API in MyPortal API Corner.

†This will attempt to authorize the end user's IP address to submit a single transaction through i4Go, regardless of
where in the world the end user resides.

Accepted i4Go Parameters
This section describes the accepted i4Go Entry and Exit Parameters developers will use to post the payment
information to i4Go. This section also describes the accepted parameters i4Go will use to return data to the
application.

Note: i4Go is not case sensitive with inbound parameter names.
Outbound parameter names will always be in lowercase. For example,
i4go_uniqueid.

Note: The Uniform Resource Identifier (URI) has a maximum limit of 2048
bytes in length.

Accepted i4Go Entry Parameters
The accepted i4Go Entry Parameters that can be posted to i4Go, enabling processing, are described and defined in
the tables below.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 67 of 107

i4Go Technical Reference Guide

https://myportal.shift4.com/index.cfm?action=development.shift4api

i4Go Entry Parameters for the authorizeClient Request

Parameter Valid Value Required? Description

fuseaction

• account.authorizeCl
ient

• Up to 255 bytes in length

Yes

Use the
fuseaction=account.authorizeClient
parameter to authorize the end user's IP address
to submit a transaction through i4Go.

When
fuseaction=account.authorizeClient
is in use, the i4go_clientip and
i4go_accesstoken parameter must be used
in conjunction.

i4go_clientip

• Numeric

• xxx.xxx.xxx.xxx

• Up to 255 bytes in length

Yes

Use the i4go_clientip parameter to post
the end user's public IP address to i4Go.

If the end user’s IP address falls in the following
ranges, then we substitute the requestor’s IP
address for the end user’s IP address because all
of these addresses are considered to be internal
addresses.

• 127.0.0.1/32

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

i4go_accesstoken
• String

• Up to 255 bytes in length
Yes Use the i4go_accesstoken parameter to

post the merchant's Access Token to i4Go.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 68 of 107

i4Go Technical Reference Guide

i4Go Entry Parameters for the Tokenization Request

Parameter Valid Value Required? Description

fuseaction

• api.jsonPostCardEntry

OR

• api.xmlPostCardEntry

OR

• form.cardEntry

AND

• Up to 255 bytes in length

Yes

Use the
fuseaction=api.jsonPostCardEntr
y parameter if you do not need to support
browsers prior to Internet Explorer 8 or if you
are writing your own AJAX using JSON
interface. This is the preferred method.

The response will be returned to the end
user's browser in JSON format.

Use this parameter with the AJAX using JSON
implementation method.

OR

Use the fuseaction=
api.xmlPostCardEntry parameter, if
preferred.

OR

Use the fuseaction=form.cardEntry
parameter if JavaScript MUST be disabled. (It
is important to note that better error handling
can be achieved when JavaScript is enabled,
so this option should only be used as a
fallback.)

The response will be returned to the
i4go_successurl and
i4go_failureurl parameters.

Use this parameter with the Standard Direct
Post implementation method.

i4go_accessblock
• String

• Up to 1024 bytes in length
Yes

Use the i4go_accessblock parameter to
post the received access block to i4Go.

The application will need to modify the
payment information form to include the
access block (which includes the merchant’s
Access Token).

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 69 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

i4go_successurl
• String

• Up to 255 bytes in length
No

If the fuseaction= form.cardEntry
parameter is in use, use the
i4go_successurl to post the return URL
for a successful request to i4Go.

i4go_failureurl
• String

• Up to 255 bytes in length
No

If the fuseaction= form.cardEntry
parameter is in use, use the
i4go_failureurl to post the return URL
for a failed request to i4Go.

i4go_p2pedevicetype
• Numeric

• 01
No

If point-to-point encryption (P2PE) is in use,
use the i4go_p2pedevicetype
parameter to post P2PE device type 01 to
i4Go.

If the i4go_p2pedevicetype parameter
is in use, the i4go_p2peblock parameter
must be used in conjunction.

i4go_p2peblock
• String

• Up to 255 bytes in length
No

If point-to-point encryption (P2PE) is in use,
use the i4go_p2peblock parameter to
post the swiped payment card data to i4Go.

If the i4go_p2peblock parameter is in
use, the i4go_p2pedevicetype
parameter must be used in conjunction and
the following parameters are not necessary:
i4go_cardnumber,
i4go_expirationmonth, and
i4go_expirationyear.

Please refer to the Track Information Format
section for the format in which the payment
card’s track information should be posted to
i4Go.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 70 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

i4go_trackinformation§
• String

• Up to 255 bytes in length
No

Use the i4go_trackinformation
parameter to post the track information of
the payment card, as swiped by the end user,
to i4Go.

If the i4go_trackinformation
parameter is in use, the
i4go_cardnumber,
i4go_expirationmonth, and
i4go_expirationyear parameter must
be used in conjunction.

Please refer to the Track Information Format
section for the format in which the payment
card’s track information should be posted to
i4Go.

i4go_cardnumber§
• Numeric

• Up to 24 bytes in length
Yes

Use the i4go_cardnumber parameter to
post the payment card number, as entered by
the end user, to i4Go.

Note: The length allowed to be entered in the
iFrame is determined by the card brand
detected. For example, if a Visa is detected,
the maximum length is 19. If a gift card is
entered, the maximum length is 24.

i4go_expirationmonth
• 1 or 2 Numeric Digits

• Up to 2 bytes in length
Yes

Use the i4go_expirationmonth
parameter to post the expiration month of
the payment card, as entered by the end user,
to i4Go.

Choose between the following formats; for
example, April would be 4 or 04.

i4go_expirationyear
• 2 or 4 Numeric Digits

• Up to 4 bytes in length
Yes

Use the i4go_expirationyear
parameter to post the expiration year of the
payment card, as entered by the end user, to
i4Go.

Choose between the following formats; for
example, the year would be 25 or 2025.

i4go_cvv2code§
• String

• Up to 4 bytes in length
Yes

Use the i4go_cvv2code parameter to post
the card security code (CVV2) found on the
front or back of the payment card, as entered
by the end user, to i4Go.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 71 of 107

i4Go Technical Reference Guide

Parameter Valid Value Required? Description

i4go_cvv2indicator
• 0, 1, and 2

• Up to 255 bytes in length
No

Use the i4go_cvv2indicator parameter
to post the reason the card security code
(CVV2) was not provided, as entered by the
end user, to i4Go. For example:

• 0 - Not Present

• 1 - Present

• 2 - Unreadable

i4go_cardholdername
• String

• Up to 255 bytes in length
No

Use the i4go_cardholdername
parameter to post the name on the payment
card, as entered by the end user, to i4Go.

i4go_cardtype§

• AX, DC, JC, MC, NS, VS, YC,
and GC

• Up to 2 bytes in length

No

Use the i4go_cardtype parameter to post
the two-character code that identifies the
payment card type being used, as entered by
the end user, to i4Go. For example:

• AX - American Express

• DC - Diners Club/Carte Blanche

• JC - Japanese Credit Bureau

• MC - MasterCard

• NS - Novus/Discover

• VS - Visa

• YC - IT'S YOUR CARD®

• GC - Non-standard gift card

i4go_postalcode
• String

• Up to 20 bytes in length
No

Use the i4go_postalcode parameter to
post the postal/ZIP code from the address
that corresponds to the payment card, as
entered by the end user, to i4Go.

i4go_streetaddress
• String

• Up to 50 bytes in length
No

Use the i4go_streetaddress parameter
to post the numerical portion of the street
address that corresponds to the payment
card, as entered by the end user, to i4Go.

§i4Go is designed to keep real and sensitive CHD information out of the merchant’s Web server or hosting
provider’s system. If you send this information to the merchant’s systems, you are defeating i4Go’s purpose.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 72 of 107

i4Go Technical Reference Guide

Non-i4Go Entry Parameters

Note: This section does not apply to the AJAX using JSON implementation
method.

In addition to sending the accepted i4Go Entry Parameters, developers can post the application’s user-defined
entry parameters to i4Go. These entry parameters are non-i4Go entry parameters.

Non-i4Go entry parameters are not stored in Shift4’s database and therefore can contain any information that is
meaningful to the merchant. The non-i4Go entry parameter and its associated value are returned as an extra
parameter with the Success URL or Failure URL.

For example, if the following entry parameter is sent:

• ExampleParameter=value

i4Go will return “EXAMPLEPARAMETER=VALUE” with the Success URL or Failure URL.

Please note the prefix i4go_ is reserved for accepted i4Go Entry Parameters. This prefix cannot be used to send
non-i4Go entry parameters; however, there are no other restrictions on non-i4Go entry parameter names.

In addition, i4Go places no limitation on the number of characters in non-i4Go entry parameters. As in this case,
the Direct Post method, the parameters are not sent as part of the URL; therefore, maximum URL lengths for
browsers supported by the merchant do not apply.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 73 of 107

i4Go Technical Reference Guide

Accepted i4Go Exit Parameters
When the Standard Direct Post method is in use, the i4Go Exit Parameters are returned as URL query string
parameters. When the AJAX using JSON method is in use, the parameters are returned in a parsed response.

The accepted i4Go Exit Parameters returned by i4Go are described and defined in the following table.

Parameter Valid Value When Returned? Description

i4go_response

• SUCCESS and
FAILURE

• Up to 255 bytes
in length

Always Use the i4go_response parameter to receive
i4Go’s Response Message.

i4go_responsecode

• Numeric

• Up to 255 bytes
in length

Always

Use the i4go_responsecode parameter to
receive i4Go’s Response Code. For example:

• 1 = SUCCESS

For a complete list of Response Codes and
Messages, please see Appendix A.

i4go_countrycode
• String

• 2 bytes in length
Always

Use the i4go_countrycode parameter to
receive the two character country code as assigned
by iana.net and other internet address authorities.
For example:

• us = United States

• ?? = Unknown

Note: International Organization for
Standardization (ISO) Alpha-2 country codes are
returned. Shift4 has seen at least two unofficial
country codes (for example, AP) returned from
internet address authorities, which should be
treated as unknown country codes.

i4go_accessblock

• String

• Up to 1024
bytes in length

Successful
authorizeClient

Request

Use the i4go_accessblock parameter to
receive i4Go's access block.

The application will modify the payment
information form to include the access block (which
includes the merchant’s Access Token).

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 74 of 107

i4Go Technical Reference Guide

Parameter Valid Value When Returned? Description

i4go_server

• String

• Up to 128 bytes
in length

Successful
authorizeClient

Request

Use the i4go_server parameter to receive the
name of the i4Go server.

The application will use the result as the server
name in the form action for the payment
information form.

i4go_cardtype§

• AX, DC, JC, MC,
NS, VS, YC, and
GC

• Up to 2 bytes in
length

Successful
Tokenization Request

Use the i4go_cardtype parameter to receive
i4Go’s return of the two-character code that
identifies the payment card type being used. For
example:

• AX - American Express

• DC - Diners Club/Carte Blanche

• JC - Japanese Credit Bureau

• MC - MasterCard

• NS - Novus/Discover

• VS - Visa

• YC - IT'S YOUR CARD

• GC - Non-standard gift card

i4go_uniqueid

• String

• 16 bytes in
length

Successful
Tokenization Request

Use the i4go_uniqueid parameter to receive
the payment token (which can be a TrueToken or a
GTV).

The application will use and store the payment
token to process the transaction.

i4go_expirationmonth

• 1 or 2 Numeric
Digits

• Up to 2 bytes in
length

Successful
Tokenization Request

Use the i4go_expirationmonth parameter to
receive i4Go’s return of the expiration month of
the payment card. For example, based on your
format, April would be 4 or 04.

i4go_expirationyear

• 2 or 4 Numeric
Digits

• Up to 4 bytes in
length

Successful
Tokenization Request

Use the i4go_expirationyear parameter to
receive i4Go’s return of the expiration year of the
payment card. For example, based on your format,
the year would be 25 or 2025.

§i4Go is designed to keep real and sensitive CHD information out of the merchant’s Web server or hosting
provider’s system. If you send this information to the merchant’s systems, you are defeating i4Go’s purpose.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 75 of 107

i4Go Technical Reference Guide

Non-i4Go Exit Parameters

Note: This section does not apply to the AJAX using JSON implementation
method.

When the Standard Direct Post method is in use, in addition to the i4Go Exit Parameters, if you send a non-i4Go
entry parameter, i4Go will send the same parameter/value back as an exit parameter. Refer to the Non-i4Go Entry
Parameters section for more information.

Note: i4Go does not process the non-i4Go entry parameters. i4Go simply
sends the parameters back to the application so the application can
process the non-i4Go parameters as needed.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 76 of 107

i4Go Technical Reference Guide

Track Information Format
This section contains a table that defines the format in which the payment card’s track information should be
posted to i4Go.

How was
cardholder
data entered?

Track Information Format Example

Track 1 Swipe

Track 1 Format:

• %B

• Payment card number

• ^

• Cardholder name

• ^

• Expiration date
(YYMM)

• ?

Track 2 Swipe

Track 2 Format:

• ;

• Payment card number

• =

• Expiration date
(YYMM)

• ?

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 77 of 107

i4Go Technical Reference Guide

How was
cardholder
data entered?

Track Information Format Example

Tracks 1 and 2
Swipe

Track 1 Format:

• %B

• Payment card number

• ^

• Cardholder name

• ^

• Expiration date
(YYMM)

• ?

-and-
Track 2 Format:

• ;

• Payment card number

• =

• Expiration date
(YYMM)

• ?

P2PE Device
Type 01 –

Track 1 Swipe

Track 1 Format:

• See example

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 78 of 107

i4Go Technical Reference Guide

How was
cardholder
data entered?

Track Information Format Example

P2PE Device
Type 01 –

Track 2 Swipe

Track 2 Format:

• See example

P2PE Device
Type 01–

Track 1 and 2
Swipe

Track 1 Format:

• See example

-and-
Track 2 Format:

• See example

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 79 of 107

i4Go Technical Reference Guide

Sample Code
This section contains sample code detailing the use of the fuseaction=api.jsonPostCardEntry
parameter for the tokenization request.

WARNING! The sample code was designed for demonstration purposes
only. Do not attempt to copy or use the sample code.

Sample AJAX Call
onSubmit: function(e) {

var myself = this;

e.preventDefault();

this.hideError();

if($(this.form).valid()){

var mask = "********";

postData = {

fuseaction:"api.jsonPostCardEntry",

i4go_accessblock:$(this.form).find("input[name=i4go_accessB
lock]").val(),

i4go_cardtype:$(this.form).find("select[name=i4go_cardType]
").val(),

i4go_cardnumber:$(this.form).find("input[name=i4go_cardNumb
er]").val(),

i4go_expirationmonth:$(this.form).find("select[name=i4go_ex
pirationMonth]").val(),

i4go_expirationyear:$(this.form).find("select[name=i4go_exp
irationYear]").val(),

i4go_cvv2code:$(this.form).find("input[name=i4go_cvv2Code]"
).val()

};

$(this.form).find("input[name=i4go_cardNumber]").blur().val(mask+po
stData.i4go_cardnumber.slice(-4));

$(this.form).find("input[name=i4go_cvv2Code]").blur().val(mask.slic
e(0,postData.i4go_cvv2code.length));

$("#dialog-wait").dialog("open");

if (this.settings.debug || this.parentSettings.remoteDebug) {

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 80 of 107

i4Go Technical Reference Guide

console.log("(i4goTrueTokenRemote) onSubmit(): Posting
payment data:",this.settings.server);

}

$.ajax({

url: myself.settings.server+"/index.cfm",

type: "POST",

dataType: "json",

timeout: 15000,

data: postData,

success: function(data) {

myself.forwardTokenResponse.apply(myself,arguments);

},

error: function(jqXHR, textStatus, errorThrown){

if (myself.settings.debug ||
myself.parentSettings.remoteDebug) {

console.log("(i4goTrueTokenRemote)
onSubmit(): AJAX post failed: ",textStatus);

console.log("(i4goTrueTokenRemote)
onSubmit(): TOKENIZATION FAILED FIRST ATTEMPT -
RETRYING STARTING WITH NEW ACCESSBLOCK...");

}

// we're going to try twice - the first time just
failed!

// get a new i4go_accessBlock

$.ajax({

url: "index.cfm",

type: "GET",

dataType: "json",

timeout: 15000,

data: {

fuseaction: "get.refreshAccessBlock",
// You must write this web service call.

i4go_accessBlock:
myself.settings.accessBlock

},

success: function(data) {

myself.settings.server =
data.i4go_server;

myself.settings.accessBlock =
data.i4go_accessblock;

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 81 of 107

i4Go Technical Reference Guide

postData.i4go_accessblock =
data.i4go_accessblock;

if (myself.settings.debug ||
myself.parentSettings.remoteDebug) {

console.log("(i4goTrueTokenRe
mote) onSubmit(): Second attempt,
posting payment
data:",myself.settings.server);

}

$.ajax({

url:
myself.settings.server+"/index.cfm",

type: "POST",

dataType: "json",

timeout: 25000,

data: postData,

success: function(data) {

myself.forwardTokenRes
ponse.apply(myself,arguments)
;

},

error: function(jqXHR,
textStatus, errorThrown){

console.warn("(i4goTru
eTokenRemote) onSubmit():
AJAX post failed:
",textStatus);

myself.displayError(te
xtStatus);

myself.forwardTokenRes
ponse({

i4go_response:
"FAILURE",

i4go_responsec
ode: "-101",

i4go_responset
ext: "Payment POST
failed: "+textStatus

});

}

});

},

error: function(jqXHR, textStatus,
errorThrown){

console.warn("(i4goTrueTokenRemote)
onSubmit(): Access block refresh failed:
",textStatus);

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 82 of 107

i4Go Technical Reference Guide

myself.displayError(textStatus);

myself.forwardTokenResponse({

i4go_response: "FAILURE",

i4go_responsecode: "-102",

i4go_responsetext: "Access
block refresh failed:
"+textStatus

});

}

});

}

});

//$("button[type=submit],
input[type=submit]").attr('disabled',true);

}

}

i4Go Native Wallet Handling and Direct POST

Note: Before you start, review the Implementing Apple Pay and Google
Pay Wallets section.

There are four steps to manually enable and use Apple Pay and Google Pay buttons directly.

Step 1 – i4auth Access Call (fuseaction=account.authorizeClient)
Standard i4go access call (fuseaction=account.authorizeClient) to retrieve an accessBlock. This call
must include basket information as defined in the authorizeClient part of the API call.

Step 2 – Wallet Info Gathering
The get3ds call must be performed to get the information needed for setting up the buttons, as well as Apple Pay
merchant driven negotiations to retrieve the cryptogram.

Request
GET [i4m URL from fuseaction=account.authorizeClient
call]?fuseaction=get.get3dsInfo&i4go_accessBlock=[accessBlock from fuseaction=account.authorizeClient call]

Response
{

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 83 of 107

i4Go Technical Reference Guide

 "success": 1,

 "errorMsg": "",

 "walletConfig": {

 "merchantID": 107367,

 "countryCode": "US",

 "googlePay": {

 "gateway": "shift4",

 "allowedCardNetworks": [

 "AMEX",

 "DISCOVER",

 "JCB",

 "MASTERCARD",

 "VISA"

],

 "merchantDomain": "ss-myportal.s4-test.com",

 "merchantId": "BCR2DN6TVPKLD5QV",

 "environment": "TEST", // Informational only.

 "allowedAuthMethods": [

 "CRYPTOGRAM_3DS",

 "PAN_ONLY"

],

 "authJwt":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJtZXJjaGFudElkIjoiQkNSMkRONlRWUEtMRDVRViIsImV4cCI6MS42MDc3
MTU2NUU5LCJtZXJjaGFudE9yaWdpbiI6InNzLW15cG9ydGFsLnM0LXRlc3QuY29tIiwiaWF0IjoxLjYwNzcxMjA1RTl9.lGq
BOuqndvSq322qYPYwwbhgVVp5emFFN_MJh5YhsyGeILemLw7ODfic1tSCkgCThOTIcblZSBw_Lp9lbo1CGw"

 },

 "providerDomain": "i4m.shift4test.com",

 "merchantName": "",

 "applePay": {

 "merchantIdentifier": "merchant.com.i4go.i4m",

 "supportedNetworks": [

 "amex",

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 84 of 107

i4Go Technical Reference Guide

 "discover",

 "jcb",

 "masterCard",

 "visa"

]

"partnerInternalMerchantIdentifier": "MID-0001234567"

 },

"merchant": {

 "id": 1234567,

 "identifier": "MID-0001234567",

 "verified": false, //This must be true for the production environment. It may be false in test environments.

 "name": ""

 },

 },

 "currencyCode": "USD"

 },

 "jwt":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJPcmdVbml0SWQiOiI1ODJiZTlkZWRhNTI5MzJhOTQ2YzQ1YzQiLCJPYmpl
Y3RpZnlQYXlsb2FkIjp0cnVlLCJpc3MiOiI1ODJlMGEyMDMzZmFkZDEyNjBmOTkwZjYiLCJQYXlsb2FkIjp7IkNvbnN1bWV
yIjp7IlNoaXBwaW5nQWRkcmVzcyI6eyJQb3N0YWxDb2RlIjo4OTEzNCwiQ2l0eSI6IkxhcyBWZWdhcyIsIkNvdW50cnlDb
2RlIjo4NDAsIkxhc3ROYW1lIjoiU29tbWVycyIsIlN0YXRlIjoiTlYiLCJGaXJzdE5hbWUiOiJTdGV2ZSIsIkFkZHJlc3MxIjoiMTU
1MSBIaWxsc2hpcmUgRHIiLCJQaG9uZTEiOjcwMjU5NzI0ODAsIkFkZHJlc3MyIjoiIn0sIkFjY291bnQiOnsiQWNjb3VudE5
1bWJlciI6IiIsIkV4cGlyYXRpb25Nb250aCI6IiIsIkV4cGlyYXRpb25ZZWFyIjoiIn0sIkJpbGxpbmdBZGRyZXNzIjp7IlBvc3RhbE
NvZGUiOjg5MTM0LCJDaXR5IjoiTGFzIFZlZ2FzIiwiQ291bnRyeUNvZGUiOjg0MCwiTGFzdE5hbWUiOiJTb21tZXJzIiwiU3
RhdGUiOiJOViIsIkZpcnN0TmFtZSI6IlN0ZXZlIiwiQWRkcmVzczEiOiIxNTUxIEhpbGxzaGlyZSBEciIsIlBob25lMSI6NzAyNTk
3MjQ4MCwiQWRkcmVzczIiOiIifSwiRW1haWwxIjoic3RldmVAc2hpZnQ0LmNvbSJ9LCJPcmRlckRldGFpbHMiOnsiT3JkZ
XJDaGFubmVsIjoiUyIsIk9yZGVyTnVtYmVyIjoiMDAwMDAwMDAwMSAiLCJBbW91bnQiOjQ0NDQsIkN1cnJlbmN5Q29
kZSI6ODQwfX0sImV4cCI6MS42MDc3MTM4NUU5LCJpYXQiOjEuNjA3NzEyMDVFOSwianRpIjoiM0VDMENDNTgtRTY
1Ri1DNDIxLUMxMUY5RkQzREUwNDI3M0EiLCJDb25maXJtVXJsIjoiaHR0cHM6Ly9odHRwczovL3NzLWk0Z28taTRtLn
M0LXRlc3QuY29tL2luZGV4LmNmbT9mdXNlYWN0aW9uPXdzLmNjYUNhbGxiYWNrIn0.MGofP62SvcV6la29Apx0gn6
pYOTQnKAQVqi0A_tLY6s",

 "basket": {

 "Consumer": {

 "MobilePhone": "",

 "BillingAddress": {

 "PostalCode": 89134,

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 85 of 107

i4Go Technical Reference Guide

 "City": "Las Vegas",

 "CountryCode": 840,

 "LastName": "Sommers",

 "State": "NV",

 "FirstName": "Steve",

 "Address1": "1551 Hillshire Dr",

 "Phone1": "",

 "Address2": ""

 },

 "ShippingAddress": {

 "PostalCode": 89134,

 "City": "Las Vegas",

 "CountryCode": 840,

 "LastName": "Sommers",

 "State": "NV",

 "FirstName": "Steve",

 "Address1": "1551 Hillshire Dr",

 "Phone1": "",

 "Address2": ""

 },

 "Email2": "",

 "Email1": "steve@shift4.com"

 },

 "OrderDetails": {

 "OrderNumber": "0000000001 ",

 "Amount": 44.44,

 "CurrencyCode": 840

 }

 }

}

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 86 of 107

i4Go Technical Reference Guide

walletConfig Parameters

The table below defines the parameters in walletConfig that are needed for Apple Pay and/or Google Pay
wallet support.

Parameters Valid for applePay Valid for googlePay

merchantId Yes Yes

countryCode Yes Yes

providerDomain Yes Yes

merchantName Yes Yes

merchant Yes Yes

Gateway Yes

allowedCardNetworks Yes

merchantDomain Yes

merchantId Yes

environment Yes

allowedAuthMethods Yes

authJwt Yes

merchantIdentifier Yes

supportedNetworks Yes

partnerInternalMerchantIdentifier Yes

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 87 of 107

i4Go Technical Reference Guide

Step 3 – Button Setup
Using the walletconfig info received from the get3ds call above, piece together the fields required to provide the
initialization parameters of Apple Pay and/or Google Pay.

Here is how we piece together the info to initialize the buttons:

function applePayInit(config) {

 try{

 _wallets_i4goTrueTokenObj.settings.debug && remoteLog("Checking for Apple Pay...");

 if((typeof config === "object")

 && (typeof config.applePay === "object")

 && (typeof config.applePay.merchantIdentifier === "string")

 && config.applePay.merchantIdentifier.length){

 if (window.ApplePaySession && ApplePaySession.supportsVersion(3) &&
ApplePaySession.canMakePayments()) {

 var promise = ApplePaySession.canMakePaymentsWithActiveCard(config.applePay.merchantIdentifier);

 promise.then(function (canMakePayments) {

 if(canMakePayments){

 $(".apple-pay-button").on("click",onApplePayClick);

 $(".apple-pay-button").show().removeClass("hidden").removeClass("pay-hidden");

 }

 }, function(error) {

 console.log("applePayInit Error: " + error.message);

 });

 } else {

 console.log("Apple Pay not found");

 }

 }else{

 console.log("Apple Pay not configured");

 }

 }catch(e){

 console.log("applePayInit Error: " + e.message);

 }

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 88 of 107

i4Go Technical Reference Guide

}

function googlePayInit(config) {

 try{

 if((typeof config === "object")

 && (typeof config.googlePay === "object")

 && (typeof config.googlePay.authJwt === "string")

 && config.googlePay.authJwt.length){

 tokenizationSpecification.parameters.gateway = config.googlePay.gateway;

 tokenizationSpecification.parameters.gatewayMerchantId = config.merchantID.toString();

 allowedCardAuthMethods = config.googlePay.allowedAuthMethods;

 allowedCardNetworks = config.googlePay.allowedCardNetworks;

 baseCardPaymentMethod.parameters.allowedAuthMethods = allowedCardAuthMethods;

 baseCardPaymentMethod.parameters.allowedCardNetworks = allowedCardNetworks;

 cardPaymentMethod = Object.assign(

 {},

 baseCardPaymentMethod,

 {

 tokenizationSpecification: tokenizationSpecification

 }

);

 onGooglePayLoaded();

 }else{

 console.log("Google Pay not configured");

 }

 }catch(e){

 console.error("googlePayInit Error: " + e.message);

 }

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 89 of 107

i4Go Technical Reference Guide

}

Sample button setup {Please also refer to your google developers guide}

{

 apiVersion: 2,

 apiVersionMinor: 0,

 callbackIntents: ['PAYMENT_AUTHORIZATION'],

 allowedPaymentMethods: [

 {

 type: 'CARD',

 parameters: {

 allowedAuthMethods: walletConfig.googlePay.allowedAuthMethods,

 allowedCardNetworks: walletConfig.googlePay.allowedCardNetworks,

 },

 tokenizationSpecification: {

 type: 'PAYMENT_GATEWAY',

 parameters: {

 gateway: walletConfig.googlePay.gateway,

 gatewayMerchantId: walletConfig.merchant?.identifier ?? walletConfig.merchantID.toString(),

 },

 },

 },

],

 merchantInfo: {

 merchantId: walletConfig.googlePay.merchantId,

 merchantName: walletConfig.merchantName || 'Merchant',

 merchantOrigin: walletConfig.googlePay.merchantDomain,

 authJwt: walletConfig.googlePay.authJwt,

 },

 transactionInfo: {

 displayItems: [

 {

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 90 of 107

i4Go Technical Reference Guide

 label: 'Donation',

 type: 'SUBTOTAL',

 price: donationAmount.toString(),

 },

],

 totalPriceStatus:'FINAL',

 totalPriceLabel: 'Total',

 totalPrice: donationAmount.toString(),

 currencyCode: walletConfig.currencyCode,

 countryCode: walletConfig.countryCode,

 },

 }

Now buttons should be active – if configured and wallet is available.

Additional Apple Pay driven merchant verification and session exchange must be performed in order to retrieve
Apple Pay token/cryptogram. Please review Apple Pay’s documentation in the links below for more information:

• https://applepaydemo.apple.com/
• https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_usi

ng_javascript

In addition, to see how this negotiation is performed in the Shift4 code for iFrame integration, see the following:
https://i4m.i4go.com/js/wallets.js. While you will not be using this .js on your page, you can review the Apple
section of the .js to get some pointers on how we handle the negotiation.

Some helpful pointers:

• The config.applePay.merchantIdentifier is received from the applepay section of the results of the get3ds
call. From the sample 3ds call in the Step 2 –Wallet Info Gathering section, that value is
"merchant.com.i4go.i4m" <= Please use the value from your get3ds call as it might differ.

• The config.applePay.partnerInternalMerchantIdentifier can also be retrieved from the results of the
get3ds call. From the get3ds sample, we can see that value would be MID-0001234567 <= Please use the
value from your get3ds call as will differ from what is here.

• For getApplePaySession, you will need the const url + const data

const url =

"https://" + _wallets_i4goTrueTokenObj.walletConfig.providerDomain +
"/index.cfm?fuseaction=ws.applePaySession"; This will look something like:

“https://i4m.shift4test.com/index.cfm?fuseaction=ws.applePaySession”

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 91 of 107

i4Go Technical Reference Guide

https://applepaydemo.apple.com/
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://i4m.i4go.com/js/wallets.js

where wallets_i4goTrueTokenObj.walletConfig.providerDomain is the providerDomain gotten from the
get3ds call. The above const url shows the test value providerDomain (which will differ from production),
so always use the value gotten from your get3ds call.

const data =

“validationURL= https://apple-pay-gateway.apple.com/paymentservices/startSession +
wallets_i4goTrueTokenObj.settings.accessBlock" <= this is the accessblock from the authorizeClient
fuseaction. Overall, you will have something like:

https://i4m.shift4test.com/index.cfm?fuseaction=ws.applePaySession&validation
URL=https://apple-pay-
gateway.apple.com/paymentservices/startSession&i4go_accessBlock=A0000,642C6AA
3F92231AE90D398944CDC6F520FD17A884032FEEB098D3125371E22D647F23A757F389AD9EE5F
1A434DB94D18283A17DB4BBFEBEFB435A52EA468C98EC9F405FB423B8F96D64671D243FA86B7F
64E447FB6AAE0279F208BDB1734E9F6BC01BCFB45BE5C914BB8EA0AF4E983B72036AE1F0ED081
80AF057FF2B2469599503AA2176CA2BD2DA435419B27A24CD3C2D0F958B60A20A140D332817B9
E2450AE4B7651F516A106B1875053067127B79BF0E6991ECAF9884723D94C31EEFA09DACE2B86
8121BEF6B2D589ACA6BD0B9624FC2D4819503C10A9FC183240A1070E8702450D4475285224034
3CDB920E9C2

There are some other steps and information needed, review the Apple Pay links:

• https://applepaydemo.apple.com/
• https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_usi

ng_javascript

Step 4 – Token Exchange
Once wallet info has been received, you must exchange wallet token for Shift4 token. Upon receiving a wallet
token, pass it to i4Go to get a Shift4 token.

Request
POST [i4go_server IP from access block (authorize client) request]?fuseaction=api.jsonPostCardEntry

Use form field values (NOT JSON as shown here, this was simply for readability):

{

 "i4go_accessBlock":
"A0000,391B35E6DB2237101BA7A8D2D96257942D3593698F7A5345EF60E8065B0731B43CA1EAAB7832A686155
976854CD0AF68B47ADAF59B312B9758E53A335B61ED3C032389B0CAE41025878C9C586EF2C3DD5299D93AEC4A
9FF443F88DF65F79E451E1B4516582ECB847BBD4DB49AD84478BF441F08CE057C7396E1B30A92C82886D6220D0
33AE620FC87E370006753590E6FDA9B5A9C614387529112E0AC1E6BD3E68ABC65866DF886C3B0577402A05AB91
C2C9F5AC3412762CACA41A1C549F715DEC9CCFDF6B938DCADC38282F87533366CB5AA1BCBA470B77095D163E6
BF590616BFED9962080F708E6A6687E4BA2FBE0F3D6CF37B5243A4FA0A07E91AC3AAEBB007B705BC2DA6546AE3

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 92 of 107

i4Go Technical Reference Guide

https://applepaydemo.apple.com/
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript

C85AEE0E74DD5DC7E9615496DDFD354B3CC6ACC5632920B06D4A8B57CD1F77893067FAAD09BB107BC4420BC6C
09B7F5CCAA2399A0F9F1",

 "i4go_successURL": "",

 "i4go_failureURL": "",

 "i4go_cardNumber": "",

 "i4go_cvv2Code": "",

 "i4go_p2peBlock": "",

 "i4go_trackInformation": "",

 "i4go_applePayToken": "", //Supply wallet info here when Apple Pay wallet is in use.
 "i4go_googlePayToken":
"{\"apiVersionMinor\":0,\"apiVersion\":2,\"paymentMethodData\":{\"description\":\"Visa •••• 7059\",\"tokenizat
ionData\":{\"type\":\"PAYMENT_GATEWAY\",\"token\":\"{\\\"signature\\\":\\\"MEYCIQDAjHJsut6FUFHQJ9vHaz/
WwWDSr1LJ1E2W8K2OQpMFMgIhAKzdOvAEaPKTCMWHUN99AN4GDCeftQ3ZU7ukY8yAuhiy\\\",\\\"intermediate
SigningKey\\\":{\\\"signedKey\\\":\\\"{\\\\\\\"keyValue\\\\\\\":\\\\\\\"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQg
AEITiSX9PdY1V66C98vknpbpr2puqgVRK+DAoKKzGkW8hu7mgZ1ho8vA2xQ0GgqaKoG4PwTkWLKNangOvkioIoHA\\\
\\\\\u003d\\\\\\\\u003d\\\\\\\",\\\\\\\"keyExpiration\\\\\\\":\\\\\\\"1608349315283\\\\\\\"}\\\",\\\"signatures\
\\":[\\\"MEYCIQDlbB98DVDtlFrEtye0kZS1d7Fi50uMPanXkVMpolbQlgIhAIouwQNS3r+GQaJb+pZI5y3o5p4Brdj7i64G
1k/sLrCx\\\"]},\\\"protocolVersion\\\":\\\"ECv2\\\",\\\"signedMessage\\\":\\\"{\\\\\\\"encryptedMessage\\\\\\\"
:\\\\\\\"lYEHUpYnQxPVZsuasPzwbAZSw4PS6BJpkGzJ8UbeUSF81JRZO5tI0/WFvVUj+Xm36GvcHSTY9gH/rl3fpwu+pZ
gmBZtq43CyDk05QelqqV/TG052BoXWWn1CueECvh9ivZdvBP2z7fCYSY4l6g2lhQ5J5ymtnvCrawSQlmMlb2a2+PK8z1I
xhU5u7eHXaPag7ZMpjbQZao9w/26EWcxshzOJOaBMOuAV6g9G+u5Lj+A6qPRXI4jFir3MtlWaNf5TCHdAJwGZzYOmY
DFPbJlmMGqWEJ5010rg+9tR146Im0phXc5n+3iOjDje+QrgZduoYrQF67CE1/Ace7h+yrk98qO2Ff9GjvLM5x6r+dAmHd
MsWZglT4TjuUyfO9+0PnsiQcYiBGIJnxbIIEG2X3RxG4GmRLcIbb3h8rdtgKmoQXYZX//4qFD+HpYQ2fGfz1xS9iM62OEm
tY0NfEWfx+biEee0OTFHDargxw\\\\\\\\u003d\\\\\\\\u003d\\\\\\\",\\\\\\\"ephemeralPublicKey\\\\\\\":\\\\\\\"BJI
DVAIiUOgnXiS795ZU8MTYM7r13EhbIZ42/NxcmgXRMckertYPVGd98zJKifq6i6Abp+enhJbBn463C8p98WY\\\\\\\\u0
03d\\\\\\\",\\\\\\\"tag\\\\\\\":\\\\\\\"y58ZPuXyQc6ZNh3AdjwsNBu8QPff56QO+q9sVryzjV0\\\\\\\\u003d\\\\\\\"}\
\\"}\"},\"type\":\"CARD\",\"info\":{\"cardNetwork\":\"VISA\",\"cardDetails\":\"7059\"}}}",

 "i4go_referrer": "https://ss-myportal.s4-
test.com/index.cfm?action=development.i4mDemo&appReload=vFAowBJyQ2XOqOJA",

 "i4go_cardholderName": "",

 "cardNumber": "",

 "cvv2Code": "",

 "i4go_streetAddress": "",

 "i4go_postalCode": ""

}

Response
Use only highlighted fields below from the response and ignore the OTN response.

{

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 93 of 107

i4Go Technical Reference Guide

 "i4go_cardtype": "VS",

 "i4go_response": "SUCCESS",

 "i4go_responsecode": "1",

 "i4go_extendedcarddata":
"eyJ0aHJlZURTZWN1cmUiOnsiYXV0aGVudGljYXRpb25Tb3VyY2UiOjEsIndhbGxldElEIjoyMTZ9fQ==",

 "otn": {

 "secondaryerrorcode": 0,

 "expirationmonth": 12,

 "validavs": "",

 "preauthorizedtolerance": 0,

 "posttotaltime": 961,

 "cardnumber": "XXXXXXXXXXXX1111",

 "shorterror": "",

 "primaryerrorcode": 0,

 "tagstarttime": 1607713359530,

 "apiformat": 0,

 "invoice": "",

 "options": "",

 "functionrequestcode": "E0",

 "date": 123099,

 "uniqueid": "11118py3z9820f2r",

 "timeout": 25,

 "secondaryamount": 0,

 "customername": " ",

 "responsecode": "",

 "primaryamount": 0,

 "apisignature": "$",

 "preauthorizedamount": 0,

 "cvv2indicator": "",

 "tagtotaltime": 963,

 "poststarttime": 1607713359530,

 "expirationyear": 25,

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 94 of 107

i4Go Technical Reference Guide

 "apioptions": "RETURNUTOKEN,ALLDATA,MSRCAPABLE,MANUALENTRYCAPABLE",

 "reference": "WT0000000009",

 "cvv2code": "",

 "verbose": true,

 "cfhttp_statuscode": "200 OK",

 "errortext": "",

 "errorindicator": "N",

 "longerror": "",

 "merchantid": 0,

 "authsource": "E",

 "clerk": 0,

 "zipcode": "",

 "rawline1": "OK",

 "rawline2": "0,\"\",\"VS\",\"\",0.00,\"\",\"\",\"\"",

 "time": "000000",

 "expirationdate": "0000",

 "trackinformation": "MXXXXXXXXXXXX1111=0000?",

 "utoken": "411111-7EC765DA-000788-00001384-173347C849E",

 "cgi_host": "http://127.0.0.1:16448/API/s4tran_action.cfm",

 "streetaddress": "",

 "vendor": "Shift4.i4Go.4.1",

 "tagfinishtime": 1607713360493,

 "cardtype": "VS",

 "postfinishtime": 1607713360491,

 "authorization": "",

 "cvv2valid": "",

 "tranid": 0

 },

 "i4go_utoken": "411111-7EC765DA-000788-00001384-173347C849E",

 "i4go_expirationmonth": "12",

 "i4go_expirationyear": "2025",

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 95 of 107

i4Go Technical Reference Guide

 "i4go_uniqueid": "11118py3z9820f2r" // Use the value returned with i4go_uniqueid when attempting
authorization. Do not use the i4go_utoken value.

}

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 96 of 107

i4Go Technical Reference Guide

Appendix A – i4Go Response Codes and Messages
Appendix A describes i4Go Response Codes and Messages an end user may see.

Developers can display the Response Message returned by i4Go, or they can process the Response Code and
display a customized response message.

The following table describes each Response Code and the corresponding Response Message end users will see (if
the developer chose to display the Response Message rather than customizing their own) in the event of a success
or an error during the process.

Note: Not all response codes and messages will be applicable as they’re
based on the implementation method.

Response
Code Response Message Explanation

1 SUCCESS The i4Go request was successful.

authorizeClient Function Errors

300 Server does not accept authorizeClient
function

The authorizeClient function failed because
the i4Go server neither requires nor accepts the
authorizeClient function.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 97 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

301 Not authorized

One of the following errors has occurred with the
required and hidden parameter fields on the
payment information form:

• The i4Go server does not have the value
submitted with the i4go_clientip
parameter in queue.

• The required i4Go Entry Parameters and
the i4go_accessblock parameter
were not returned to the specified i4Go
server name.

• The value submitted with the
i4go_accessblock parameter is
invalid.

• The allotted time for using the
corresponding values to the
i4go_clientip and
i4go_accessblock parameters has
expired.

• Shift4 Risk Management Services has
returned a risk assessment value of
D or E.

302 authorizeClient Error: Please try again. Unable to complete the authorizeClient
request.

302 authorizeClient Error: Communication
error - #cfhttp.statusCode#. Please try again. A Shift4 communication service is not responding.

302 authorizeClient Error: Invalid XML
response - no children. Please try again.

A Shift4 communication service is responding in
an incorrect format.

302
authorizeClient Error
#val(xmlDoc.response.xmlAttributes.code)#:
Please try again.

A Shift4 communication service responded with
an error.

302 authorizeClient Error: No notes
returned. Please try again.

A Shift4 communication service is not returning
expected data.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 98 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

302 authorizeClient Error: No server
returned. Please try again.

A Shift4 communication service is not returning
expected data.

503 USAGE ERROR: i4go_accessToken is required
(or i4Go_accountId and i4Go_siteId)

Valid credentials, either an AccessToken or an
AccountID and SiteID, were not supplied.

503 USAGE ERROR: Invalid i4go_accessToken
format

The supplied AccessToken is improperly
formatted.

505 USAGE ERROR: i4go_clientIP is required The ClientIP address was not supplied.

505 USAGE ERROR: Invalid i4go_clientIP format
(IPv4 format required)

The supplied ClientIP address is improperly
formatted.

Configuration Errors

Note: Configuration Errors alert the developer to problems during the development and approval
process. The end user should never see these messages.

503 USAGE ERROR: i4Go_AccessToken is required

The developer must modify the payment
information form to include the merchant's Access
Token. For additional information, see the Prior to
Implementation section.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 99 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

504 CONFIGURATION ISSUE: Access block invalid or
missing

The value submitted with the
i4go_accessblock parameter field is invalid
(due to length) or missing.

The developer must contact Shift4 to enable this
function.

Once enabled, i4Go returns an access block when
a successful authorizeClient request has
been received. The developer must modify the
payment information form to return this value
with the i4go_accessblock parameter
(which includes the merchant’s Access Token).

505 USAGE ERROR: Invalid i4Go_ClientIP format
(IPv4 format required)

The value submitted with the i4go_clientip
parameter field is invalid.

506 USAGE ERROR: i4Go_ClientIP is required
The developer must modify the payment
information form to post the end user's IP address
to i4Go.

Informational Messages

601 i4Go down for maintenance - try again later The i4Go system is down for maintenance.

602 Lighthouse Transaction Manager down for
maintenance - try again later

Lighthouse Transaction Manager is temporarily
unavailable due to maintenance.

603
Lighthouse Transaction Manager merchant
database down for maintenance - try again
later

Lighthouse Transaction Manager is operational,
but the merchant database is temporarily
unavailable due to maintenance.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 100 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

Blacklist Errors

9827 Country [country code] is blacklisted

The end user is attempting to process a
transaction from a country that has been
blacklisted for security reasons. i4Go will not allow
connections from this country.

9828 IP Address [IP address] is blacklisted

The end user is attempting to process a
transaction from an IP address that has been
blacklisted for security reasons. i4Go will not allow
connections from this IP address.

Data Entry Errors

101 Invalid or missing card type indicator

One of the following errors has occurred:

• A card type was not submitted with the
i4go_cardtype parameter field on
the payment information form.

• A card type was submitted with the
i4go_cardtype parameter field on
the payment information form, but it was
not a valid Shift4 card type.

• A valid card type was submitted with the
i4go_cardtype parameter field on
the payment information form, but the
card type is not in use for the merchant
based on LTM API information.

The end user must correct the i4go_cardtype
parameter field on the payment information form.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 101 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

102 Card type indicator does not match card
number

A card number was submitted with the
i4go_cardnumber parameter field on the
payment information form, but it was not a valid
card number based on the card type submitted
with the i4go_cardtype parameter field on
the payment information form.

For example, a Visa payment card number was
submitted and an American Express card type was
submitted on the payment information form.

The end user must correct the i4go_cardtype,
i4go_cardnumber, or both parameter fields
on the payment information form.

(Refer to Response Code 101 for additional
information about card types in i4Go.)

104 Invalid track information

The encoded track information for the swiped
payment card submitted with the
i4go_cardnumber parameter field on the
payment information form is invalid, possibly
because the magnetic strip is worn.

The end user can try entering the payment card
number manually in the i4go_cardnumber
parameter field on the payment information form
to resolve the error. If entering the payment card
number manually does not resolve the error, or if
the payment card number cannot be entered
manually, a different payment card must be used.

If you are using IT'S YOUR CARD gift cards, refer to
the Card Manufacturing Tips document for more
information about track encoding.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 102 of 107

i4Go Technical Reference Guide

https://s4-myportal.s3.amazonaws.com/downloads/documentation/ltm/card%20manufacturing%20tips.pdf

Response
Code Response Message Explanation

105 Invalid or missing card number

A payment card number was not submitted with
the required i4go_cardnumber parameter
field on the payment information form, or i4Go
could not validate the payment card number
submitted.

i4Go validates payment card numbers using the
Luhn mod 10 check configured in the dedicated
UTG running in the Shift4 Data Center.

i4Go validates both IT'S YOUR CARD and third-
party gift card numbers against LTM, assuming
third-party gift card numbers have been imported.

The end user must correct the
i4go_cardnumber parameter field on the
payment information form.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 103 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

106 Invalid, missing or expired expiration date

One of the following errors has occurred:

• An expiration month or year was not
submitted with the
i4go_expirationmonth or
i4go_expirationyear parameter
field on the payment information form.

• An expiration month or year was
submitted with the
i4go_expirationmonth or
i4go_expirationyear parameter
field on the payment information form,
but it was not a valid expiration month or
year (for example, month 13 or year
2110) or it was submitted in an incorrect
format.

• An expiration month or year was
submitted with the
i4go_expirationmonth or
i4go_expirationyear parameter
field on the payment information form,
but the expiration month or year has
already passed.

The end user must correct the
i4go_expirationmonth,
i4go_expirationyear, or both parameter
fields on the payment information form.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 104 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

107 Invalid or missing CVV2 information

One of the following errors has occurred:

• A card security code (CVV2) was not
submitted with the i4go_cvv2
parameter field on the payment
information form.

• A card security code (CVV2) was
submitted with the i4go_cvv2
parameter field on the payment
information form, but it was invalid
because it contained non-numeric
characters.

The end user must correct the i4go_cvv2
parameter field on the payment information form.

108 Invalid CVV2 indicator

A card security code (CVV2) was submitted with
the i4go_cvv2 parameter field on the payment
information form, but it was invalid because it did
not match the card security code (CVV2) on file
(with the card issuer) for the card.

The end user must correct the i4go_cvv2
parameter field on the payment information form.

109 Invalid or missing cardholder name

One of the following errors has occurred:

• A cardholder name was not submitted
with the i4go_cardholdername
parameter field on the payment
information form.

• A cardholder name was submitted with
the i4go_cardholdername
parameter field on the payment
information form, but it was invalid
because it did not match the cardholder
name on file for the card.

The end user must correct the
i4go_cardholdername parameter field on
the payment information form.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 105 of 107

i4Go Technical Reference Guide

Response
Code Response Message Explanation

110 Invalid or missing street address for AVS

One of the following errors has occurred:

• A street address was not submitted with
the i4go_streetaddress parameter
field on the payment information form.

• A street address was submitted with the
i4go_streetaddress parameter
field on the payment information form,
but it was an invalid submission for the
Address Verification System (AVS).

The end user must correct the
i4go_streetaddress parameter field on the
payment information form. AVS requires the
numerical portion of the street address that
corresponds to the payment card.

111 Invalid or missing postal code for AVS

One of the following errors has occurred:

• A postal/ZIP code was not submitted with
the i4go_postalcode parameter
field on the payment information form.

• A postal/ZIP code was submitted with the
i4go_postalcode parameter field on
the payment information form, but it was
an invalid submission for the Address
Verification System (AVS).

The end user must correct the
i4go_postalcode parameter field on the
payment information form. AVS requires the
postal/ZIP code from the address that
corresponds to the payment card.

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 106 of 107

i4Go Technical Reference Guide

Appendix B – Additional Resources
Appendix B contains a list of additional resources that may be helpful and provide additional guidance. Direct any
specific questions about these documents to their respective publishers.

Product Support
For assistance with this and any other Shift4 product, visit www.shift4.com/support/.

Live Support
Information about troubleshooting techniques and handling special problems that may occur during installation,
configuration, or use can be obtained by contacting the Shift4 Customer Support team.

Development/Integration Support
For assistance handling problems that may occur when developing an application programming interface (API) and
integrating Shift4 products with your system, contact your Shift4 API analyst.

Shift4 Guides and Documentation
The following Shift4 guides and documentation may provide additional helpful information and are located here:

• Securing the Merchant’s Site That Uses i4Go
• Account Administrator Guide
• Card Manufacturing Tips

Industry Websites
The following sites provide additional industry guidelines and standards:

• https://www.pcisecuritystandards.org
• http://usa.visa.com/merchants/protect-your-business/index.jsp

Document v1.8 | i4Go v4.11.20+
© 2025 Shift4. All rights reserved.

External Use NDA
Page 107 of 107

i4Go Technical Reference Guide

https://www.shift4.com/support/
https://shift4.zendesk.com/hc/en-us/categories/4408114171411-Resource-Library

	Using the i4Go Technical Reference Guide
	Introduction to i4Go
	Security Best Practices
	Other Implementation Requirements
	Prior to Implementation
	i4Go Implementation Methods
	iFrame
	Implementing Step 1
	Sample – preauthorizeClient Request
	Card Verify
	cardOnFile
	paymentAPI Example for Card Verify Support

	3DS
	paymentAPI Example for 3DS Support
	3DS Testing

	Implementing Step 2
	Implementing Step 3
	Sample Code – jQuery, i4m, and cardswipe Scripts
	Sample Code – i4m Initialization and i4Go Exit Parameters
	Sample Code – i4goFrame Div and challengeIframe Div

	Implementing Step 4
	Sample Code – i4Go Exit Parameters

	Implementing Step 5
	Accepted i4Go Parameters
	i4Go Entry Parameters for the preauthorizeClient Request
	OrderDetails Object Example
	paymentAPI and 3DS_STANDALONE Example
	paymentAPI and CARD_VERIFY Example
	Accepted i4Go Exit Parameters
	risk Object Details
	risk Object Example

	Example of i4Go in an iFrame
	Implementing Apple Pay and Google Pay Wallets
	Apple Pay
	What is Apple Pay?
	Apple Pay Prerequisites

	Google Pay
	What is Google Pay?
	Google Pay Prerequisites

	Implementing Wallets
	Step 1 – Account Setup
	Step 2 – CSS and JavaScript – Adding Additional Includes
	Sample Code

	Step 3 - i4GoTrueToken Initiation
	Sample Code

	Step 4 – HTML – Adding Buttons
	Sample Code

	Step 5 – Test
	Step 6 – Advanced Features
	Google Pay Button Styles
	Apple Pay Button Styles
	Name, Address, and Static Shipping Options
	Dynamic Shipping and Sales Tax

	AJAX Using JSON and Standard Direct Post
	AJAX Using JSON
	Standard Direct Post
	Accepted i4Go Parameters
	Accepted i4Go Entry Parameters
	i4Go Entry Parameters for the authorizeClient Request
	i4Go Entry Parameters for the Tokenization Request
	Non-i4Go Entry Parameters

	Accepted i4Go Exit Parameters
	Non-i4Go Exit Parameters

	Track Information Format
	Sample Code
	Sample AJAX Call

	i4Go Native Wallet Handling and Direct POST
	Step 1 – i4auth Access Call (fuseaction=account.authorizeClient)
	Step 2 – Wallet Info Gathering
	Request
	Response
	walletConfig Parameters

	Step 3 – Button Setup
	Step 4 – Token Exchange
	Request
	Response

	Appendix A – i4Go Response Codes and Messages
	Appendix B – Additional Resources
	Product Support
	Live Support
	Development/Integration Support
	Shift4 Guides and Documentation
	Industry Websites

